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Dear readers,
As part of VinAI’s effort to nurture the next generations of AI talents in

Vietnam, we decide to release our Linear Algebra course to the public.
At VinAI, we use this course to train our residents and build up strong

mathematical fundamentals that are essential for their research careers in
AI fields, and later, for their Ph.D. studies at the top Computer Science
program.
We do hope that the community (especially universities’ students) find

this course’s material useful for their studies and careers.
Thank you.

VINAI Artificial Intelligence Application and Research JSC
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Content

History of (Linear) Algebra.

Concepts in Linear Algebra: Linear map, kernel, matrix, range, rank,
etc.

Eigenvalues, eigenvectors.

Spectral decomposition theorem.

Other decompositions of a matrix.

Some special matrices.

Matrix norms.
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Main focuses

The relationship between linear algebra and geometry.

Foster the intuition about linear algebra.

Build/construct your understanding of linear algebra systematically.
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What is Linear Algebra?

Wikipedia

Linear algebra is central to almost all areas of mathematics.
Linear algebra is also used in most sciences and fields of engineering,
because it allows modeling many natural phenomena, and computing
efficiently with such models.

William Stein

Mathematics is the art of reducing any problem to linear algebra.
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Brief History of Linear Algebra

India example

One-third of a collection of beautiful water lilies was offered to Shiva,
one-fifth to Vishnu, one-sixth to Surya, and one-fourth to the Devi. The
six that remained were presented to the guru. How many water lilies were
there in all?

Let x be the number of water lilies: x = 1
3x + 1

5x + 1
6x + 1

4x + 6.
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Brief history of Linear Algebra

Vietnam example: Dog and chicken

There are 36 dogs and chickens, the total number of legs are 100. How
many dogs and chickens are there?

X number of dogs, Y number of chickens

X + Y = 36

4X + 2Y = 100.

Solve the equation we get X = 14,Y = 22 .
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Internet Example
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Brief History of Linear Algebra

Generally, we need to solve a system of linear equations which has
some variables.

The Babylon knew how to solve 2× 2 system of linear equations with
two unknowns.

Around 200 BC, the Chinese showed they could solve 3× 3 system of
linear equations.

The equation ax + b = c was worked on by people from all walks of
life.

Leibnitz in 17th century introduced the concept of determinant.

Cramer presented his ideas to solve system of linear equations based
on determinants.
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Brief History of Linear Algebra

Euler brought to light that a system of linear equations does not have
to have a solution.

Gauss introduced elimination method to solve system of linear
equations.

In 1848, Sylvester introduced the term “matrix".

Cayley defined the matrix multiplication.

With the development of computer, the matrix calculations were
speed up.

Story of Nobel laureate, who needed to compute inverse matrix of 25
by 25 matrix. He had to access to super-computer at that time.
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Relationship with Geometry

Rene Dercastes in 1637 introduced the coordinate to represent points in
plane, which is now called Cartesian coordinates.

Source: Wikipedia
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Relationship with Geometry

Why is the Cartesian coordinate important?

Points, Lines, Shapes, Objects could be represented as set of numbers.

Concepts in geometry could be represented as a set of numbers.

Source:Wikipedia
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Relationship with Geometry

Dual view of the object:

Geometric view helps to image and visualise objects.
Algebraic view helps to do calculations.
Imagine of high dimensional space.

Source: Internet
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Problems with Cartesian Coordinates

The Cartesian coordinates need an origin.

It also needs a (orthogonal) system of basis vectors/directions for
coordinates

When we change the origin or change the system of vectors, the
coordinates also change.

However, the object is still the same.

Questions:

How do we describe/formularize of those changes, when we change the
basis vectors?
How we formularize when the object changes?
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A Generalization of Cartesian Coordinates

Vector space

Given an origin O, for each point A, we view it as a vector ~OA.

The whole space could be considered as a vector space.

For example

Addition, subtraction between vectors could be viewed as addition
and subtraction on coordinates.

However, we need a set of basis vectors to span the whole space.

Tung Pham Linear Algebra 15 / 133



Vector Space

In vector space, an origin is fixed, every point in the space is
determined by a vector from the origin to that point.

Addition, subtraction between vectors and multiplication a vector
with a number will result in a vector.

There is no coordinate.

However, we could put coordinate there by viewing the space through
the lense of Cartesian coordinates.

We set up a system of vectors such that the linear combination of
them form the whole vector space.

The system that has minimal number of vectors are called the basis
vectors.

When the whole space is Rn, then the number of basis vectors equals
n.
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Examples of Vector Space

Line: R
Plane: R2

The set of polynomials with real coefficients

p(x) = a0 + a1x + . . .+ anx
n

is also a vector space. Since sum of two polynomials is also a
polynomial. Product of polynomial with a real number is also a
polynomial.

Set of continuous functions f : R→ R is also a vector space.
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Vector Space

Basic concepts

Linear combination: given vector v1, . . . , vn, the linear combination of
v1, . . . , vn are the set

a1v1 + a2v2 + . . .+ anvn,

a1, . . . , an are the coefficients (scalar) which are often R or C.
Linearly dependent vectors v1, . . . , vk : there exists number ai such
that some of ai 6= 0 and

a1v1 + . . .+ akvk = ~0.

Example: A,B and C are three points, with center of gravity G , then
~GA, ~GB and ~GC are dependent vectors.

~GA + ~GB + ~GC = ~0.
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Vector Space

Basic concepts

Linearly independent vectors v1, . . . , vk : for all ai with some ai 6= 0,
then

a1v1 + . . .+ akvk 6= ~0.

Dimension of a vector space V: the minimal number of vectors such
that their linear combination is the vector space V.
Given vector space V and v1, . . . , vn are linearly independent and their
linear combination forms V, then the set v1, . . . , vn is called a system
of basis vectors.

There are many tuples of basis vectors.

Example: the vector space of polynomial, we could choose the basis
vectors are

1, 2x − 1, 3x2 − 2x , . . .
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Vector Space

Some basic results of vector space V:
The number of linearly independent vectors in V cannot exceed the
dimension of V.
If there are more vectors than the dimension of V then those vectors
are linearly dependent.

Any vector in V could be written as the linear combination of basis
vectors of V.
If some vectors are pairwise linearly independent, then it does not
mean that they are linearly independent.
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Vector Space

The set of continuous functions on R is a vector space. The
dimension of that space is infinite.

There are many other cases of vector space in which their space’s
dimension is infinite.

Rn is one of the most popular vector space.

We often approximate or view other space as Rn.

In reality, we are only able to see the 3 dimensional space. For higher
dimensional space, we could only imagine abstractly.
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Linear Map

Example of linear maps

Source: Internet

Tung Pham Linear Algebra 22 / 133



Linear Map

Definition (Linear map)

L is a linear map from vector space V to W when

L(a~u + b~v) = aL(~u) + bL(~v)

for ~u and ~v are two vectors in V, a and b are scalar (real number, complex
number etc).

Example: Linear map L : R2 → R2 with

L([x , y ]) = x × L([1, 0]) + y × L([0, 1]).

Example: Non-linear map L : R2 → R2

L([x , y ]) = [2x + 3y , x − y + 1].
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Matrix

Matrix

A rectangle of size m × n of numbers, which is a linear map from n
dimensional space to m dimensional space.

Example:

L =

(
2 2
1 3

)
e1 = [1, 0], e2 = [0, 1]

L(e1) =

(
2 2
1 3

)(
1
0

)
=

(
2
1

)
L(e2) =

(
2 2
1 3

)(
0
1

)
=

(
2
3

)
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Matrix

From the previous example, the map L takes unit vectors e1 and e2
map to vectors (2, 1) and (2, 3), which are the columns of matrix L.

For any vector v = (x , y), v could be written as x × (1, 0) + y × (0, 1).

Then

L(x , y) = x · (2, 1) + y · (2, 3) = (2x + 2y , x + 3y)

=

(
2 2
1 3

)(
x
y

)
=

(
2x + 2y
x + 3y

)
.

When L is a m × n matrix, L : Rn → Rm.
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Rank and Kernel of Linear Map

Some definitions/concepts for linear map L : V → W

Image of L

Image of L is the set L(V) ⊂ W.

Properties: L(V) is a vector space.

Rank of L

The dimension of L(V) is also the rank of L.

Properties: rank of L is the number of independent vectors/columns of L.1 2 3
4 5 6
7 8 9
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Rank and Kernel of Linear Map

Kernel of L

The kernel of L, denoted by Ker(L), is defined as

Ker(L) =
{
v ∈ V : L(v) = 0

}
Proposition

Ker(L) is also a vector space.

The proof is easy, assume that v1, v2 ∈ Ker(L),

L(v1) = L(v2) = 0

L(a1v1 + a2v2) = a1L(v1) + a2L(v2) = 0⇒ a1v1 + a2v2 ∈ Ker(L).
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Kernel of Linear Map (continued)

To solve equation Lx = 0, to obtain Ker(L).

L =

1 2 3
4 5 6
7 8 9

 ; v1 =

1
4
7

 v2 =

2
5
8

 v3 =

3
6
9


Lx = x1v1 + x2v2 + x3v3 = 0

We know that v1 − 2v2 + v3 = 0, and v1 and v3 are independent. Hence

Ker(L) =
{
c(1,−2, 1)

∣∣c ∈ R
}
.
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Kernel of Linear Map (continued)

L =

1 2 3
4 5 6
7 8 9

 ; v1 =

1
4
7

 v2 =

2
5
8

 v3 =

3
6
9


v1 − 2v2 + v3 = 0.

the column v2 could be represented as linear combination of v1 and v3, v2
could be eliminated to simplify the linear map L.

In reality, some map could be approximated by linear map.

Dimension reduction is an important area in statistics and machine
learning.
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Rank and Nullity Theorem

Rank and Nullity theorem

Let L be a linear map from V to W with the dimension of V is finite, then

Rank(L) + Nullity(L) = Dim(V).

Rank(L) is the dimension of L(V), Nullity(L) is the dimension of Ker(L)
and Dim(V) is the dimension of V.

Source: Internet
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Rank and Nullity Theorem

Intuition of this theorem: the vector space V could be decomposed as the
sum of two vector spaces,

Vector space V is mapped to a subspace of W.

The other vector space is mapped to zero under map L.

Those two vector spaces have only one common vector which is zero.
Hence, the sum of their dimensions is the dimension of the sum. That
proves the theorem.
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Proof of Rank and Nullity Theorem

Assume dim(Ker(L)) = k and dim(V) = k + n.

Let v1, . . . , vk be a basis of Ker(L).

We extend the basis {v1, . . . , vk} to {v1, . . . , vk , vk+1, . . . , vk+n} such
that the linear combination of v1, . . . , vk+n is the whole space V.
We need to show the dimension of Image(L) is equal to n.

We first show that L(vk+1), . . . , L(vk+n) are linear independent. If the
contrary, then there exist some ai ’s such that

ak+1L(vk+1) + . . .+ an+kL(vk+n) = 0

⇒L(ak+1vk+1 + . . .+ ak+nvk+n) = 0

⇒u := ak+1vk+1 + . . .+ ak+nvk+n ∈ Ker(L).

Tung Pham Linear Algebra 32 / 133



Proof of Rank and Nullity Theorem

Since vector u ∈ Ker(L), u could be written as linear combination of
vectors v1, . . . , vk . Contradiction to the linear independency
assumption between v1, v2, . . . , vk+n.

For any vector v ∈ V , there exist ai

v = a1v1 + . . .+ akvk︸ ︷︷ ︸
s

+ ak+1vk+1 + . . .+ ak+nvk+n︸ ︷︷ ︸
u

= s + u.

Let U be the vector space spanned by vk+1, . . . , vk+n,
L(s + u) = L(u)⇒ L(U) = Image(L).

L(vk+1, . . . , L(vk+n) are linear independent and L(U) = Image(L).
Dimension of Image(L) is equal to n.
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Composition Map

Let L1 : V0 → V1 and L2 : V1 → V2 be a linear maps between two
vector spaces. Then L2 ◦ L1 : V0 → V2.

Assume that the dimension of V2, V1 and V0 are equal to k ,m and n
respectively.

In the language of matrix, let M1 be the matrix associated with L1
and M2 be a matrix of L2.

Then size of M1 is m × n , then size of M2 must be k ×m.

Multiplying two matrices is equivalent to find the matrix of
decomposition map L2 ◦ L1.
The product of two matrices is not commutative, because the
composition map might not be commutative.
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Inverse Map

Given L is a map from Rn → Rn.

Assume that the kernel of L is zero. It means that L is one-to-one
map.
Proof: If L(v1) = L(v2) then L(v1 − v2) = 0. Since the kernel of L is
zero, v1 − v2 = 0.

We now could define the inverse map L−1 : Rn → Rn.

The identity map I is the product of LL−1.

In the matrix form I = MM−1 = M−1M, where M is a matrix
associated with L.

It also could explain that (M1M2)−1 = M−12 M−11 , because it is an
inverse map.
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Geometry of Linear Map

A linear map is a way to rescale and change direction of vector space. It is
also a way to transform an object to another object linearly in some
directions.
Example: A linear map transforms square to a parallelogram.

M =

(
a c
b d

)
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Geometry of Linear Map

To understand/imagine a linear map, follow its geometric transformation.

Source: Internet
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Some Questions about Rank, Nullity and Dimension

What are the rank of xy> and I + xx>, where x , y are n × 1 vectors?

If T : Rn → Rm, could rank(T ) be greater than n or m?

Prove that rank(AB) ≤ min{rank(A), rank(B)}.
If A is linear map from R3 to R3. Can both rank and dimension of
kernel of A equal 2 at the same time?

Prove that rank(A) + rank(B) ≥ rank(A + B). When does the
equality happen?

Prove that Ker(T1) ∩ Ker(T2) ⊆ Ker(T1 + T2), give example when
the equality does not happen?

Prove or disprove Ker(T ) = Ker(T 2) and Image(T ) = Image(T 2)?
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Eigvenvectors and Eigenvalues

Source: Wikipedia.
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Eigvenvectors and Eigenvalues

For a linear map L, find vector v such that

Lv is parallel to v .

When v is an unit vector with that property, v is called eigenvector.

It is important to find v , since following v , the operation L is simple.

The ratio between Lv and v is called the corresponding eigenvalue.

A pair of eigenvalue and eigenvector (λ, e) of linear map L,

Le = λe.
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Properties of Eigenvalues and Eigenvectors

Let L be a linear map

Assume that e1, . . . , ek are eigenvectors of L with the same eigenvalue
λ, then every unit vector v of the linear space spanned by e1, . . . , ek
is also an eigenvector of L.
Proof:

v = α1e1 + . . .+ αkek

⇒ L(v) = L(α1e1 + . . .+ αkek)

= λα1e1 + . . .+ λαkek

= λv .

v is an eigenvector of L.
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Properties of Eigenvalues and Eigenvectors

Assume that (λ1, e1), (λ2, e2), . . . (λk , ek) are pairs of eigenvalue and
eigenvector of L. If the λi are non-zero distinct numbers, then
e1, . . . , ek are linear independent.
Proof:
Assume that e1, . . . , ek−1 are linearly independent and there exist αi

(some are non-zeros) such that

α1e1 + . . .+ αk−1ek−1 = ek

L(α1e1 + . . .+ αk−1ek−1) = λ1α1e1 + . . .+ λk−1αk−1ek−1

L(ek) = λkek

⇒λ1α1e1 + . . . λk−1αk−1ek−1 = λkek = λkα1e1 + . . .+ λkαk−1ek−1

⇒(λ1α1 − λkα1)e1 + . . .+ (λk−1αk−1 − λkαk−1)ek−1 = 0.

⇒ e1, . . . , ek−1 are not linear independent. Contradiction.
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Properties of Eigenvectors and Eigenvalues

Let V be a vector space of dimension n. Assume (λi ) be eigenvalue of a
linear map L with multiplicity nk such that

n1 + . . .+ nk = n.

Then vector space V could be represented as

V = V1 ⊕ V2 ⊕ . . .⊕ Vk

where Vi is the vector space spanned by eigenvectors which have
eigenvalues λi , and the Vi are linearly independent.
Note: ⊕ means v ∈ V, then v = v1 + . . .+ vk , v1 ∈ V1, . . . , vk ∈ Vk .
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Eigenvectors and Eigenvalues

Multiplicity of eigenvalues

A n × n matrix T has no more than n eigenvalues.

Proof: By the fundamental theorem of algebra, the determinant of

T − λI

is a polynomial degree n, thus it has no more than n real solutions. That
means there are no more than n real eigenvalues.

Using the fundamental theorem of algebra.

Based on topology concept of continuity.

It is not algebra.
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Eigenvalues and Eigenvectors

Algebraic proof:
Let Vi be the vector space corresponding to eigenvalues λi for
i = 1, 2, . . . , k. The dimension of Vi is equal to ni , ni is the multiplicity of
λi .

We consider V = V1 ⊕ V2 ⊕ . . .⊕ Vk , we need to prove that
∑k

i=1 ni
is also the dimension of V .

It is equivalent to show that if v1 ∈ V1, v2 ∈ V2, . . . , vk ∈ Vk , then
v1, v2, . . . , vk are independent.

Assume the contrary, Without Loss of Generality (WLOG) there exist
minimal t and ai 6= 0; 1 ≤ i ≤ t, such that

a1v1 + . . .+ atvt = 0

L(a1v1 + . . .+ atvt) = λ1a1v1 + . . .+ λtatvt = 0.
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Eigenvalues and Eigenvectors

Algebraic proof:

From the previous slide,

λ1a1v1 + λ1a2v2 + . . .+ λ1atvt = 0

λ1a1v1 + λ2a2v2 + . . .+ λtatvt = 0.

Taking the difference,

(λ1 − λ2)a2v2 + . . .+ (λ1 − λt)atvt = 0.

Contradiction.

Thus, V1 ⊕ V2 ⊕ . . .⊕ Vk has dimension n1 + . . .+ nk and it is a
subspace of V .

Hence, n ≥
∑k

i=1 ni .
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Some Questions about Eigenvectors and Eigenvalues

Let A be n× n invertible matrix with eigenvalues {λi , i ∈ [1, n]}.What
are the eigenvalues of A−1?

Find the eigenvalues and eigenvectors of I + xx>, where x is n × 1
vectors.

Assume that A is m × n matrix and B is a n ×m matrix. Prove that
AB and BA have the same non-zero eigenvalues.

Let A be an upper-triangular matrix. Find all eigenvalues of A.

A =

a b c
0 d e
0 0 f

 .

Assume A ≈ B, could we deduce that λi (A) ≈ λi (B) and
ei (A) ≈ ei (B), where λi (X ), ei (X ) are the i th eigenvalue and
eigenvector of X ?
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Matrix and Diagonalisability

When multiplying two matrices, the more zero-entries, the less
computational cost is.

When two matrices are square matrices with non-zeros are only in the
diagonal. Their product is the matrix in which its main diagonal is the
product of two diagonals.

A matrix A is diagonalisable if A = PDP−1.

Here P is invertible and D is diagonal.

Example

A =

(
4 −1
6 −1

)
⇒ D =

(
1 0
0 2

)
; P =

(
1 2
3 4

)
.
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Matrix and Diagonalisability

Important properties

An = PDnP−1

An = (PDP−1)× (PDP−1)× . . .× (PDP−1) = PDnD−1.

P is a matrix of eigenvectors of A which their eigenvalues are the
entries on the diagonal of D.

P−1AP =


λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λn

 ⇒ AP = P


λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λn


⇒ APi = λiPi

Pi is the ith column of P.
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Matrix Multiplication

Given matrices A and B, let D = AB. What is the formula for D?

A =


a11 a12 . . . a1n
a21 a22 . . . a2n

. . . . . .
. . . . . .

am1 am2 . . . amn

 ; B =


b11 b12 . . . b1p
b21 b22 . . . b2p

. . . . . .
. . . . . .

bn1 bm2 . . . bnp


D = AB; dij =

n∑
k=1

aikbkj .

If there are three matrices A,B and C , let D = ABC , then

dij =
∑
k,`

aikbk`c`j .

We could use it to verify (AB)> = B>A>.
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Determinant

Recall: A linear map is a way to transform a system of basis vectors
to a system of vectors.

The coordinates of new systems are recorded in the columns of the
matrix.

In other way, columns of 2 by 2 matrix form a parallelogram in R2.

In high dimensional space, the columns form a parallelotope.
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Determinant

Recall: a linear map transforms a square to a parallelogram, the
volume of the parallelogram is the determinant of the matrix.

The determinant is a real number, it could be negative, since it
depends on the direction of the parallelogram / the order of column
vectors

det

(
a c
b d

)
= ad − bc; det

(
c a
d b

)
= bc − ad .
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Compute Determinant

Leibniz’s formulas

A =


a11 a12 . . . a1n
a21 a22 . . . a2n

. . . . . .
. . . . . .

an1 an2 . . . ann

 ; det(A) =
∑
σ

[
sign(σ)

n∏
i=1

ai ,σ(i)

]
.

σ is a permutation of (1, 2, . . . , n), that means σ(1), . . . , σ(n) is a
way to rearrange the set (1, 2, . . . , n).

sign(σ) = 1, if we could swap two numbers for an even times to
obtain σ(1), σ(2), . . . , σ(n) from (1, 2, . . . , n).

sign(σ) = −1 for otherwise.
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Determinant

Example:

n = 4 : σ(1) = 2, σ(2) = 1, σ(3) = 3, σ(4) = 4.

(1, 2, 3, 4) −→ (2, 1, 3, 4)⇒ sign(σ) = −1.

n = 3 : σ(1) = 2, σ(2) = 3, σ(3) = 1

(1, 2, 3) −→ (2, 3, 1)⇒ sign(σ) = 1.

Determinant of the 2× 2 matrix

det

(
a11 a12
a21 a22

)
= sign(1, 2)a11a22 + sign(2, 1)a12a21

= a11a22 − a12a21.
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Some Rules to Compute Determinant

Explain the following rules by geometry

det(In) = 1.

det(A−1) = det(A)−1.

det(AB) = det(A)det(B).

det(cA) = cndet(A).

Three matrices A, B and C have all columns the same except the ith
columns.The ith column of C equals the sum of ith columns of A and
B. Then det(C ) = det(A) + det(B).

If any row or column of A is zero vector, then det(A) = 0.

If the columns of A are dependent, then det(A) = 0.

Property det(A) = det(A>) is difficult to explain by geometry.
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Questions about Eigenvalues and Determinant

Eigenvalues of matrix T are the solutions of det(λI − T ) = 0.

Given det(A) = det(A>), prove that eigenvalues of A are also
eigenvalues of A>. Prove that det(λI − A) = det(λI − A>).

Prove that B−1AB has the same eigenvalues as A.

Let λi be eigenvalues of A, calculate the determinant of I + A.
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Spectral Decomposition

Spectral decomposition

If A is a n × n symmetric matrix, then A =
∑n

i=1 λiuiu
>
i

A = UΛU>

The ui are n × 1 eigenvectors of A, Λ is the diagonal matrix of λi , U
is the unitary/orthogonal matrix of

[
ui
]n
i=1

.

The ui are orthonormal

u>i uj =

{
0 i 6= j

1 i = j .

U>U = I = UU> or U> = U−1.

λi are real numbers.
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Spectral Decomposition

Spectral decomposition is a special case of diagonalisable matrix:

UΛU> = UΛU−1.

The main differences:

Columns of U are orthogonal vectors with length 1.

Diagonalisable matrix is not necessary symmetric matrix.

Any matrix of the form UΛU> for Λ is a symmetric matrix.
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Spectral Decomposition

We prove the last statement about UΛU>

U =

u11 . . . u1n
. . . . . . . . .
un1 . . . unn

 ; Λ =

λ1 . . . 0
. . . . . . . . .
0 . . . λn

 ; U> =

u11 . . . un1
. . . . . . . . .
u1n . . . unn


U = [uij ]; Λ = diag(λi ); U> = [uji ]

Now let A =
[
aij
]

= UΛU>, we do the multiplication

aij =
n∑

k=1

uikλkujk

aji =
n∑

k=1

ujkλkuik

Thus aij = aji .
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Sketch of Proof of Spectral Decomposition Theorem

A is a symmetric matrix

All eigenvalues are real numbers:
If Av = λv , then λ is real number

Eigenvectors with different eigenvalues are orthogonal.

If W is stable under A, then so is W⊥, i.e.

A(W) ⊂ W ⇒ A(W⊥) ⊂ W⊥.

A on W and W⊥ are symmetric linear transformation.
The restriction of A on W and W⊥ is symmetric.

A accepts a linear representation on its eigenvectors and eigenvalues.
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Proof of Spectral Decomposition Theorem

Step 1

Prove that all eigenvalues are real numbers.

Let v be an eigenvector of A: v ∈ Cn and v is the conjugate of v . Then

v>Av = v>Av = v>Av

= (v>Av)> = v>A>v = v>Av

since A is symmetric, A = A>. The LHS = RHS, then they are all real
numbers.
Let (λ, v) be a pair of eigenvalue and eigenvector:

v>Av = v>λv = λv>v = λ‖v‖2 ∈ R.

Then λ ∈ R.
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Proof of Spectral Decomposition Theorem

Step 2

Prove that eigenvectors with different corresponding eigenvalues are
orthogonal.

Let (λ, v) and (µ, u) be pairs of eigenvalue and eigenvector:

u>Av = u>λv = λu>v

v>Au = v>µu = µv>u.

However u>Av = (u>Av)> = v>A>(u>)> = v>Au. It follows that

µv>u = λu>v ⇒ u>v = 0⇒ u ⊥ v .
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Proof of Spectral Decomposition Theorem

Step 3

If A ∈ Rn×n is symmetric and W is a subspace of Rn such that
A(W ) ⊂W , then A(W⊥) ⊂W⊥.

Let x ∈W and y ∈W⊥, then

x>Ay = (x>Ay)> = y>A>x = y>Ax .

Since Ax ∈W , y>Ax = 0, then x>Ay = 0 for all x . Therefore Ay ∈W⊥.
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Proof of Spectral Decomposition Theorem

Step 4

If W⊥ is a subspace and A(W⊥) ⊂ W⊥ then W⊥ contains an eigenvector
of A.

Choose an orthogonal basis u1, . . . , um of W⊥, because Aui ∈ W⊥. Denote

rij = u>i Auj ⇒ rij = rji

rij is the coefficient of Auj on the direction ui thus

Auj =
m∑
i=1

rijui

The matrix R = (rij) is symmetric. R is a linear map in the orthonormal
system of u1, . . . , um
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Proof of Spectral Decomposition Theorem

Step 4 continued
Since R is symmetric matrix under the orthogonal system (u1, . . . , um),
there exists a pair (λ,w) is the eigenvalues and eigenvector of R in the
space W.
Assume the coordinates of w under the orthonormal system (u1, . . . , um) is
(x1, . . . , xm).

Then

w =
m∑
j=1

xjuj .

Rx = λx , where x = (x1, . . . , xm)

m∑
j=1

rijxj = λxi .
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Proof of Spectral Decomposition Theorem

Step 4 continued

A(w) =
m∑
j=1

xjA(uj) =
m∑
j=1

xj

m∑
i=1

rijui

=
m∑
i=1

( m∑
j=1

rijxj
)
ui

=
n∑

i=1

λxiui

= λw .

It means that w is eigenvector of A.
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Proof of Spectral Decomposition Theorem

Step 5

Building the subspace W by induction.

We start with the first pair of eigenvalue and eigenvector (λ1, u1).

Set W1 = Ru1, then A(W1) ⊂ W1, then A(W⊥1 ) ⊂W⊥
1 .

Adding eigenvector u2 ∈ W⊥1 to form W2 = span(u1, u2) and so on.

We obtain a sequence of orthogonal eigenvectors u1, . . . , un and their
corresponding eigenvalues.

The proof is done.
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Calculation using Spectral Decomposition

Let A is a symmetric matrix, then A =
∑n

i=1 λiuiu
>
i , where the

(λi , ui ) are all pairs of eigenvalues and eigenvectors of A.

Let v be a vector that has the form
∑n

i=1 αiui under the orthogonal
system (ui )

We compute v>Av

v>Av = (
n∑

i=1

αiu
>
i )
( n∑
i=1

λiuiu
>
i

)
(

n∑
i=1

αiui )

=
n∑

i=1

α2
i λi .
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Geometric Representation of Spectral Decomposition

The spectral decomposition is a way to decompose a symmetric linear
map into directions and scales.

It transforms a circle to ellipse, a ball to ellipsoid.

The eigenvectors are the directions of the symmetric axes of ellipsoid.

The eigenvalues are the scales on the ellipsoid.

Note that the eigenvalues could be negative.
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Applications of Spectral Decomposition

Principle Components: Given n points X1, . . . ,Xn in Rd with n ≥ d ,
find the principal components of them
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Non-negative, Positive Definite Matrix

A positive definite matrix is a matrix A that satisfies the condition:
x>Ax > 0 for all n × 1 vector x .

A semi-positive/non-negative definite matrix is a matrix A that
satisfies the condition: x>Ax ≥ 0 for all n × 1 vector x .

A symmetric matrix with all positive eigenvalues is a positive definite
matrix.

The converse is not true

(a, b)×
(

1 1
−1 1

)(
a
b

)
= a2 + b2.

A symmetric matrix with a negative eigenvalue is not a positive
definite matrix.
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Exercises for Spectral Decomposition Theorem

Are the sum and product of two symmetric matrices symmetric?

Is A>A symmetric?

Are eigenvalues of A>A all non negative?

Describe the linear map of symmetric matrix A whose eigenvalues are
±1.

Find the eigenvalues of

A =

a b c
b c a
c a b

 .
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Trace of Matrix

Trace means "vết"in Vietnamese, something is left after things
already happened.

Recall that matrix is a way to record the linear transformation under a
basis. Trace of matrix is something unchanged, under different basis.

Which means that trace depends only on the linear map, not the
coordinates.

The mathematical definition of trace is

tr(A) =
n∑

i=1

〈ui ,Aui 〉 =
n∑

i=1

u>i Aui ,

where the ui is a system of orthonormal vectors.

When A is square matrix, then trace of A is the sum of main diagonal
entries.
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Trace of Matrix

Let

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann

 ; ei =


0
...

1i
...
0

 ;

e>i Aej = e>i Aj = aij .

Here, Aj is the j th column of A.
Thus aij is the ith coordinate of vector Aj under the system

{
e1, . . . , en

}
and

A =
[
e1, . . . , en

]>
A
[
e1, . . . , en

]
.
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Properties of Trace of Matrix

tr(A) = tr(A>).

tr(αA + βB) = αtr(A) + βtr(B).

Let a, b be two n × 1 vectors,

tr(ab>) = a>b = 〈a, b〉.

Let X = [xij ] and Y = [yjk ] be two matrices of size m × n and n ×m,
then

tr(XY ) = tr(YX ).

tr is invariant under orthonormal system.
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Proof of tr(XY ) = tr(YX ):
Entries at row i and column i of XY is

n∑
j=1

xijyji

Then trace of XY is equal to

m∑
i=1

n∑
j=1

xijyji .

Similarly, we have trace of YX is equal to

n∑
j=1

m∑
i=1

yjixij .
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Properties of Trace of Matrix

Proof of the invariant property of trace: Let (ui ) be another
orthonormal system and B be the matrix under the orthonormal
system (ui ) such that

A =
[
u1, . . . , un

]>
B
[
u1, . . . , un

]
⇒ A = U>BU

⇒ UAU> = B.

For any n× n matrix X and Y , by formula of product of two matrices

tr(XY ) = tr(YX ).

Then we have

tr(B) = tr(UAU>) = tr(AU>U) = tr(AI ) = tr(A).
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Questions about Trace of Matrix

If the followings are always true

tr(AB) = tr(A)tr(B).
For A is symmetric, trace(A) is the sum of all eigenvalues.

Find all matrix of 2 by 2 A such that: tr(A2) =
[
tr(A)

]2
.

Let A be 2× 2 matrix. Prove that

A2 − tr(A) · A + det(A) · I2 = O2.

For A and B are two n× n symmetric positive definite matrices, prove
that tr(AB) > 0.
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Eigenvalues, Trace and Determinant

Eigenvalues, trace and determinant of a matrix

Let A be a n × n matrix with eigenvalues λ1, λ2, . . . , λn. Then

tr(A) =
n∑

i=1

λi ; det(A) =
n∏

i=1

λi .

A− λI =


a11 − λ a12 . . . a1n
a21 a22 − λ . . . a2n
. . . . . . · · · . . .
an1 an2 . . . ann − λ


det(A− λI ) is a polynomial of λ which has roots λ1, . . . , λn, then

det(A− λI ) =
n∏

i=1

(λi − λ).
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Eigenvalues, Trace and Determinant

The determinant of A− λI is a polynomial having the form

det(A− λI ) = (−1)nλn +
( n∑
i=1

aii
)
(−1)n−1λn−1 + . . .

by the Leibniz’s formula. On the other hand,

det(A− λI ) =
n∏

i=1

(λi − λ)

= (−1)nλn +
( n∑
i=1

λi
)
(−1)n−1λn−1 + . . .

Comparing the coefficients of λn−1 of both polynomials, we obtain

tr(A) =
n∑

i=1

λi .
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Eigenvalues, trace and determinant

Set λ = 0,

det(A) =
n∏

i=1

λi .

It is an algebraic proof. When A is diagonalizable,

A = PΛP−1,

where the columns of P are the eigenvectors of A, diagonal of Λ consists
of the eigenvalues of A.

tr(A) = tr(PΛP−1) = tr(ΛP−1P) = tr(ΛI )

= tr(Λ) =
n∑

i=1

λi .
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Eigenvalues, trace and determinant

When A is diagonalisable, A = PΛP−1. Let vi be the i th column of P,

Avi = λivi .

The parallelepiped formed by (v1, . . . , vn) is transformed by A becoming a
parallelepiped formed by (λ1v1, . . . , λnvn).

det(A) =
volume(λ1v1, . . . , λnvn)

volume(v1, . . . , vn)

=
n∏

i=1

λi .

It is more geometric.
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Some Types of Matrix

Symmetric matrix: A = A>.

Diagonal matrix: Every off-diagonal entry is equal to zero. Product of
diagonal matrices is again diagonal matrix.

Orthogonal matrix: Matrix U of n × n entries where its columns form
an orthonormal basis.

U(ei ) = Ui

ei = (0, . . . , 1i , . . . , 0)

U>U = I ; U> = U−1.

Ui is the i th column of U.
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Rotation and Reflection Matrix

Rotation and Reflection matrices are two special cases of unitary matrix.
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Some Properties of Rotation and Reflection Matrices

Rot(x)Rot(y) = Rot(x + y).

Ref(x)Ref(y) = Rot(2[x − y ]).

Rot(x)Ref(y) = Ref(y + 1
2x).

Ref(x)Rot(y) = Ref(x − 1
2y).

Rot and Ref preserve the distance between two points.
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Some Questions about Orthogonal Matrices

What is the determinant of an orthogonal matrix?

What are the possible real eigenvalues and eigenvectors of an
orthogonal matrix?

What is the product of two orthogonal matrices?

Find all the orthogonal 2× 2 matrix.
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Matrix Decompositions

Singular Value Decomposition

M is a matrix m × n, M could be decomposed as UΣV> where U is a
unitary matrix of m ×m, Σ is a diagonal matrix of m × n and V is an
unitary matrix of n × n. In particular,

M = UΣV>.

Singular value decomposition: Decompose the linear map by the
singular value and unitary matrices.

For matrix M, we define the singular values of M are the square root
of eigenvalues of MM> or M>M.

Non-diagonal entries of Σ are all equal to zero.
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Geometry of Singular Value Decomposition

V transform is like a "rotation/reflection" of the basis.

Σ is a rescaling transform in the original directions that transforms a
circle to ellipse.

U transform is like another "rotation/reflection" of the basis.

Two vectors (red and yellow) are two basic vectors.

A linear map M transforms a circle to an ellipse under a different
coordinate system.

Source:Internet
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Geometry of Singular Value Decomposition

A linear map M transform a circle to an ellipse under a different
coordinate.

When matrix M is symmetric, the U and V are transpose of each
other. It means that we rotate once, we rescale it and then we rotate
it back.

Source: Internet
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Proof of SVD

By the spectral decomposition,

M>M = VΛV> =
∑̀
i=1

λiviv
>
i =

∑̀
i=1

σ2i viv
>
i .

σ1, . . . , σ` are all positive, for some ` ≤ min{m, n}, which corresponds
to v1, . . . , v`, and σ

2
i = λi .

Denote V1 = [v1, . . . , v`] .

We extend the matrix V1 by adding n − ` vectors v`+1, . . . , vn such
that v1, . . . , vn are orthonormal vectors. Denote

V2 = [v`+1, . . . , vn], V = [V1,V2].

V>M>MV =

(
Λ 0`×(n−`)

0(n−`)×` 0(n−`)×(n−`)

)
.
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Proof of SVD

From the previous calculations,[
V1

V2

]
M>M

[
V1,V2

]
=

[
V>1 M>MV1 V>1 M>MV2

V>2 M>MV1 V>2 M>MV2

]
=

[
Λ 0
0 0

]
.

We have V>2 M>MV2 = ‖MV2‖22 = 0, it means that MV2 = 0.

We obtain some other equations

V>1 V1 = I`

V>2 V2 = In−`.

For σi > 0, define ui = Mvi/σi for i = 1, 2, . . . , `.

We will prove ui is an eigenvector of MM>.
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Proof of SVD

Since ui is an eigenvector of MM>,

MM>ui = MM>Mvi/σi = Mσ2i vi/σi = σ2i ui .

To check if ui is an unit vector, we have

u>i ui =
(Mvi
σi

)>Mvi
σi

=
1

σ2i
v>i M>Mvi

=
v>i σ

2
i vi

σ2i
= v>i vi = 1.

To check ui is orthogonal to uj for i 6= j

u>j ui =
1

σj
vjM

>Mvi
1

σi
= 0.

since vi , vj are two different eigenvectors of M>M.

Tung Pham Linear Algebra 92 / 133



Proof of SVD

Let U1 = MV1Λ−
1
2 , then U1 is orthogonal matrix of size m × `.

We have

In =
(
V1,V2

)(V>1
V>2

)
= V1V

>
1 + V2V

>
2

U1Λ
1
2V>1 = MV1Λ−

1
2 Λ

1
2V>1 = MV1I`V

>
1

= M
(
In − V2V

>
2

)
= M −MV2V

>
2 = M.

The last equality comes from MV2 = 0.

We could extend U1 by adding U2 of orthonormal vectors to U1 to
form U = [U1,U2].
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We build Σ by adding 0 into or removing 0 from the matrix(
Λ

1
2 0`×(n−`)

0(n−`)×` 0(n−`)×(n−`)

)
to make it a matrix of m × n.
For m ≥ n, M has the following form

M =
[
U1 U2

] 
[

Λ
1
2 0
0 0

]
0

[V>1
V>2

]
= U1Λ

1
2V>1 .

Or we could go in an easier way:

M = U1Λ
1
2V>1 =

∑̀
j=1

σjujv
>
j .

Adding some other σij = σi1i=j to have Σ =
[
σij
]
we have

M =
m∑
i=1

n∑
j=1

σijuiv
>
j .
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Applications of SVD

Let A be an m × n matrix which has the SVD: A = UΣV> or

A =
∑
i

σiuiv
>
i

For a given rank k, we need to find a matrix of rank k to approximate A.

Ak = arg min
X

∥∥X − A
∥∥2
F

; subject to rank(X ) = k .

Then

Ak =
k∑

i=1

σiuiv
>
i .
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SVD: Exercises

When do the singular values of a matrix become its eigenvalues?

Can some singular values of a matrix be equal to zero?

Given the SVD of M, find the SVD of M>.

Prove that the singular values of M and M> are the same.

Prove that the rank of M is equal to the number of non-zero
eigenvalues.

Given the SVD form of M, write a vector x in the convenient form to
do the calculation Mx .
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Matrix Decomposition

Polar decomposition

Given a square matrix A, A = US , where U is unitary matrix and S is
symmetric non-negative definite matrix.

The word "polar"means "cực", it is similar to polar coordinate on the
sphere,

or polar representation of complex number a + bi = |z |e iθ.

Source: Wikipedia
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Polar Decomposition

A = US , U is unitary matrix and S is symmetric positive definite
matrix.

It contains two parts: One is "rotation" or "reflection", other is
rescaling along a set of orthogonal basis (eigenvectors).

Given A = UΣV>, we could write

UΣV> = UV>(VΣV>).

The first part is "rotation", the second part is positive definite matrix.

The polar decomposition of nonsingular matrix is unique.
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Lower/Upper Triangular Matrix

Definition

A is upper triangular matrix if aij = 0 for all i > j .

Properties

A is lower triangular matrix if A> is upper triangular matrix, it means
that aij = 0 for all i < j .

Product of two upper triangular matrices is an upper triangular
matrix.

The same for product of two lower triangular matrices.

Geometric representation: The first k vectors/columns of matrix A lie
in the space spanned by e1, . . . , ek , where

ei = [0, . . . , 1i , . . . , 0]>.
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Upper/Lower Triangular Matrix

Solving system of linear equations by using the upper triangular matrix
(Gaussian elimination)

A = [aij ]; x = [x1, . . . , xn]>; b = [b1, . . . , bn]>
a11 a12 . . . a1n
0 a22 . . . a2n
...

...
. . .

...
0 0 . . . ann



x1
x2
...
xn

 =


b1
b2
...
bn


a11x1 + a12x2 + . . .+ a1nxn = b1

a22x2 + . . .+ a2nxn = b2

. . .

an−1,n−1xn−1 + an−1,nxn = bn−1

annxn = bn.
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Matrix Decomposition

QR decomposition

Matrix A could be decomposed as product of two matrices: Q and R, Q is
an orthogonal matrix and R is an upper triangular matrix, where A is a
matrix of m × n, Q is a matrix of m × n and R is a matrix of n × n.
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QR Decomposition

Columns of A are vectors obtained under the transformation A from
axis unit vectors.

Columns of Q ? are the orthonormal vectors.

Columns of R ? are the coefficients that are used to represent
columns of A under the linear combination of columns of Q.

Important: the entries of the lower part of matrix R are zeros.
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QR Decomposition

The first columns of Q and A represent two vectors of the same
direction:

1√
22 + 22 + 12

[2, 2, 1]→
[

2

3
,

2

3
,

1

3

]
.

The second vector/column in A is a linear combination of the first
and second vectors in Q

[3, 4, 1] = a
[2

3
,

2

3
,

1

3

]
+ b
[
x , y , z

]
.
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QR Decomposition

The second column of Q has norm 1 and orthogonal to the first
column of Q:

a = 3× 2

3
+ 4× 2

3
+ 1× 1

3
= 5⇒ b[x , y , z ] =

[−1

3
,

2

3
,
−2

3

]
⇒ b = 1; [x , y , z ] =

[−1

3
,

2

3
,
−2

3

]
.

Or the second vector in Q is a linear combination of the first and
second vectors in A.

Similar for the third vector and so on.

We obtain 2 3
2 4
1 1

 =

2
3
−1
3

2
3

2
3

1
3
−2
3

[3 5
0 1

]
.
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Gram-Schmidt Process

This process guarantees that the first k vectors of Q forms the same
space as the first k vectors of A.

Hence, the coefficient matrix is upper triangle matrix.

This process is named Gram-Schmidt process.

Source: Wikipedia
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Matrix Decomposition

Cholesky decomposition

A positive definite matrix A could be decomposed as product of two
matrix L and L>, where L is the lower triangle matrix.

Since A is symmetric definite, A = UΣU>.

Use the QR decomposition for Σ1/2U> = QR, then A = RQQ>R>.

A = RIR>, we obtain A = RR>.

To solve equation Ax = b, rewrite it in the form LL>x = b. Since L is
lower triangle matrix, we could solve the equation easily to find L>x ,
then find x .
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Matrix Decomposition

LU decomposition

A matrix A could be written as the product of L and U, where L is a lower
matrix and U is an upper matrix.

LDU decomposition

Matrix A = LDU, where D is diagonal matrix, L and U are unitriangle
(main diagonal entries are all equal to 1) matrices.

If a11 = 0, then l11 or u11 must equal to zero. If A is not singular, at
least one of L or U must be singular. Contradiction.

They permute A such that the factorisation doable: PA = LU.
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Moore-Penrose Inverse

Let A be a linear map from Rm to Rn.

If m > n, then A cannot be injective.

If m < n, then A cannot be surjective,

In general, if A is not bijective,

How do we define an "inverse"of A from Rn to Rm?

Solution: Moore-Penrose inverse.

The main idea is to decompose the space Rm and Rn into sum of
linear subspaces that characterises A.
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Moore-Penrose Inverse

The first step: Decompose Rm into sum of subspaces: one is the
kernel of A,

Rm = Ker(A)⊕ Ker(A)⊥.

The second step: Decompose Rn into sum of subspaces: one is the
Image of A,

Rn = Image(A)⊕ Image(A)⊥.

Note that the map A is bijective between Ker(A)⊥ and Image(A).

We can define the inverse of A between Ker(A)⊥ and Image(A), then
extend the inverse map to Rm and Rn.

The map is called Moore-Penrose inverse, denoted by A+.
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Moore-Penrose Inverse

A : Rm → Rn.

For any v ∈ Rn, decompose

v = v1 + v2

v1 ∈ Image(A); v2 ∈ Image(A)⊥.

Since v1 ∈ Image(A), there exists u ∈ Rm such that A(u) = v1.

Decompose u = u1 + u2 such that u1 ∈ Ker(A)⊥, u2 ∈ Ker(A).

Note: The above decomposition is unique up to u1.
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Moore-Penrose Inverse

The proof is followed. Assume that ∃u, ũ ∈ Rm : A(u) = A(ũ) = v1
and

u = u1 + u2; u1 ∈ Ker(A)⊥; u2 ∈ Ker(A)

ũ = ũ1 + ũ2; ũ1 ∈ Ker(A)⊥; ũ2 ∈ Ker(A)

A(u − ũ) = 0⇒ u − ũ ∈ Ker(A)⇒ u1 − ũ1 ∈ Ker(A)⇒ u1 = ũ1.

The Moore-Penrose inverse is defined as A+

A+ : Rn → Rm

A+(v) = u1.

Tung Pham Linear Algebra 111 / 133



Moore-Penrose Inverse
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Properties of Moore-Penrose Inverse

(A+)+ = A is like (A−1)−1 = A.
Proof: Given u = u1 + u2 with u1 ∈ Ker(A)⊥, u2 ∈ Ker(A).
Map between u1 and v1 is bijective, thus (A+)+u1 = v1 = Au

AA+A = A, it means that AA+Au = Au for all u ∈ Rm.
Proof:

Au = v ; A+v = u1 ⇒ u = u1 + u2, u1 ⊥ u2

Au = v = Au1; AA+Au = AA+v = Au1.

A+AA+ = A+, it means that A+AA+y = A+y .
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Properties of Moore-Penrose Inverse

(A+A)> = A+A.
Proof: For u ∈ Rm,

u = u1 + u2; u1 ∈ Ker(A)⊥; u2 ∈ Ker(A)

A+Au = u1.

Then A+A is an orthogonal projection on the subspace Ker(A)⊥

A+A(Rm) = Ker(A)⊥.

Thus eigenvalues of A+A is the identity map on Ker(A)⊥ and
vanishes on Ker(A). Thus A+A is symmetric.
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Moore-Penrose Inverse

The relationship with SVD: Given

A = UΣV>,

then

A+ = VΣ+U>,

where Σ+ is the transpose of Σ with singular value σi is replaced by 1
σi
.

Proof: For some σi > 0, thus vi ∈ Ker(A)⊥

A = UΣV> =
∑
i

σiuiv
>
i ⇒ Avi = σiui

⇒A+ui =
1

σi
vi ⇒ A+ = VΣ+U>.
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Moore-Penrose Inverse

Proof using SVD:

AA+A = A.
Proof: Assume that the dimension of Ker(A) is equal to `(

UΣV>
)(
VΣ+U>

)(
UΣV>

)
= UΣInΣ+ImΣV>

= UΣΣ+ΣV> = UΣV> = A.

(AA+)> = AA+.
Proof:

(UΣV>VΣ+U>)> = (UΣΣ+U>)> = U
(
Σ+
)>

Σ>U

= UΣΣ+U> = UΣV>VΣ+U> = AA+.
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Stochastic Matrix

Left stochastic matrix and right stochastic matrix

P =


p1,1 p1,2 · · · p1,n
p2,1 p2,2 · · · p2,n
...

...
. . .

...
pn,1 pn,2 · · · pn,n


The right stochastic matrix is P which has the properties:

∑
j pi ,j = 1.

The name “right"comes from P1n = 1n.

P is the left stochastic matrix iff P> is the right stochastic matrix.

P is double stochastic matrix iff P is both left and right stochastic
matrix.
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Stochastic Matrix

The name stochastic comes from pi ,j = P(state j | state i).

Thus, if P1 and P2 are right stochastic matrices, then P2P1 is also
right stochastic matrix.
Proof: Straight calculation shows that P2P1 is right stochastic matrix,
or we could define

p1,i ,j = P(state j | state i)

p2,j ,k = P(state k | state j).

Then

pi ,k = P(state k | state i) =
∑
j

p1,i ,jp2,j ,k .

Tung Pham Linear Algebra 118 / 133



Some Questions about Matrix Decompositions

Let A ∈ Rm×n and A = QR be its QR factorization. Let A2 be the
first two columns of A, let Q2 be the first two columns of Q. Find R2

such that A2 = Q2R2.

Given the QR decomposition of matrix A with columns of A are linear
independent, find the A+.

Is this always true (AB)+ = B+A+?

Prove that the QR decomposition is unique for non-singular matrix.
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Vector Norms

Norms are used to measure how large the quantities are.

`0, `1, `2, . . . , `p, . . . , `∞ norms.

For vector x = (x1, . . . , xn), `p(x) is defined as

`p(x) =
( n∑

i=1

|xi |p
)1/p

.

`0 norm is a counting norm.

`1 norm is absolute norm.

`2 norm is Euclidean distance.
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Vector Norms

Some basic inequalities for vector norms:

`∞(x) = max
{
|xi |; 1 ≤ i ≤ n

}
.

For 1 < p < q, `p(x) > `q(x).

limp→∞ `p(x) = max1≤i≤n |xi |.
Cauchy-Schwarz’s inequality

`1(x) ≤
√
n`2(x).

Hölder’s inequality: For 0 < p < q

`p(x) ≤ n1/p−1/q`q(x).

`p(x) is convex with respect to x when p ≥ 1.

`p(x) is concave with respect to x when 0 < p < 1.
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Matrix Norms

Norms are all defined for vectors, they are also defined for matrix.

For matrix A is a map from Rm to Rn.

‖A‖p,q = max
x 6=0

‖Ax‖q
‖x‖p

.

When p = q, we denote ‖A‖p,q = ‖A‖p.
Frobenius norm

‖A‖F =

√√√√ m∑
i=1

n∑
j=1

|aij |2 =

√√√√min{m,n}∑
i=1

σ2i (A)

where σi (A) are the singular values of A.
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Frobenius Norm

Assume that A =
[
aij
]
with i = 1, . . . ,m and j = 1, . . . , n.

The SVD of A is

A =

min{m,n}∑
i

σiuiv
>
i = UΣV>.

Then we have

A>A = VΣ>U>UΣV> = VΣ2
n×nV

>

‖A‖2F = tr(A>A) = tr(VΣ2V>) =

min{m,n}∑
i=1

σ2i .
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Matrix Norms

Schatten norm:

‖A‖S ,p =
(min{m,n}∑

i=1

σpi (A)
) 1

p
.

p = 1 it is called nuclear norm, often used in sparsity since it is
related to the rank of A.

p = 2 it is called Frobenius norm.

‖A‖S ,1 and ‖A‖S ,2 are often used.

Sometimes they use notations ‖ · ‖p.
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Matrix Norms

Some inequalities for matrix norms

‖A‖2 ≤ ‖A‖F ≤
√
r‖A‖2.

‖A‖F ≤ ‖A‖∗ ≤
√
r‖A‖F , where ‖ · ‖∗ is nuclear norm.

1√
n
‖A‖∞ ≤ ‖A‖2 ≤

√
m‖A‖∞.

1√
m
‖A‖1 ≤ ‖A‖2 ≤

√
n‖A‖1.

‖A‖2 ≤
√
‖A‖1‖A‖∞.

where matrix A ∈ Rm×n of rank r .
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Matrix Norms

We prove some inequalities in the previous slides, given the SVD of A

A =
r∑

i=1

σiuiv
>
i .

The first inequality: For any unit vector x , we write

x =
n∑

i=1

xivi ;
n∑

i=1

x2i = 1.

Then we have,

Ax =
[ r∑

i=1

σiuiv
>
i

][ n∑
j=1

xjvj

]
=

r∑
i=1

σixiui .
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Matrix Norms

‖Ax‖22 =
r∑

i=1

σ2i x
2
i ≤ σ21

r∑
i=1

x2i ≤ σ21.

It follows that ‖Ax‖2 ≤ σ1 for all ‖x‖ = 1, which means that ‖A‖2 ≤ σ1.
Then

‖A‖2 ≤

√√√√ r∑
i=1

σ2i = ‖A‖F .

The second inequality comes from the Cauchy-Schwarz’s inequality

[ r∑
i=1

σi
]2 ≤ r

r∑
i=1

σ2i .
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Matrix Norms

Some special cases of ‖A‖p,p with p ∈
{

1, 2,∞
}
.

For A = [aij ] ∈ Rm×n and x = (x1, . . . , xn)

Ax =
( n∑

j=1

aijxj

)
; i = 1, 2, . . . ,m.

p = 1:

‖Ax‖1 =
n∑

i=1

∣∣ n∑
j=1

aijxj
∣∣ ≤ m∑

i=1

n∑
j=1

|aij ||xj |

=
n∑

j=1

|xj |
∑
i=1

|aij | ≤ max
j

n∑
i=1

|aij |.

Equality: xj∗ = 1 for j∗ = arg maxj
∑n

i=1 |aij |.
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Matrix Norms

p = 2: We know that A =
∑r

i=1 σiuiv
>
i and ‖Ax‖1 ≤ σ1.

Let x = v1, then we have

Av1 =
r∑

i=1

σiuiv
>
i v1 = σ1u1

‖Av1‖2 = σ1.

p =∞: x = (x1, . . . , xn) and max |xj | ≤ 1

Ax =
( n∑

j=1

aijxj

)
; i = 1, 2, . . . ,m.

‖Ax‖∞ = max
1≤i≤m

∣∣ n∑
j=1

aijxj
∣∣ ≤ max

1≤i≤m

n∑
j=1

|aij |.

Equality: xj = sign(ai∗j) where i∗ = arg maxi
∑n

j=1 |aij |.
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Matrix Norms

The Frobenius norm is like the squared Euclidean distance, which is
the sum of the square of column vectors.

The `1 norm is often used to replace `0 norm in the case of sparsity.

The Schatten norm 1 could be used to "quantify" the rank of matrix
when we need to find low-ranked approximation.

Combination between `1 and `2 is used in Elastic Net.

`1 and `∞ are used as linear constraints in optimization problem.
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Examples

Dantzig selector (Candes and Tao, 2004): Solve the convex program

min
β

∥∥β∥∥
1

subject to Xβ = y .

They consider solving the following alternatives

min
β

∥∥β∥∥
1

subject to
∥∥X>r∥∥∞ ≤ λp,

where λp > 0, where r is the residual vector r = y − Xβ.
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Examples

Nuclear norm (Candes and Plan, 2009): Let M be a m × n matrix of
interest. However, there are only some entries of M known in the set
Ω. Question:

How do we recover M (if we know M is low-rank)?

The problem is formularized as

min rank(X ) : subject to Xij = Mij ; (i , j) ∈ Ω.

Candes and Recht proposed to solve

min
∥∥X∥∥

S ,1
subject to Xij = Mij ; (i , j) ∈ Ω.
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The end

It is the end of the course!!!
If you have any question or suggestion to improve the slides, please feel

free to drop us an e-mail at contact@vinai.io.

Subscribe & follow us on:

Youtube: http://youtube.com/VinAIResearch

Linkedin: http://bit.ly/VinAILinkedIn

Twitter: https://twitter.com/VinAI_Research
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