
Collapsed amortized variational inference for
switching nonlinear dynamical systems

Zhe Dong 1 Bryan A. Seybold 1 Kevin P. Murphy 1 Hung H. Bui 2

Abstract
We propose an efficient inference method for
switching nonlinear dynamical systems. The key
idea is to learn an inference network which can
be used as a proposal distribution for the con-
tinuous latent variables, while performing exact
marginalization of the discrete latent variables.
This allows us to use the reparameterization trick,
and apply end-to-end training with stochastic gra-
dient descent. We show that the proposed method
can successfully segment time series data, includ-
ing videos and 3D human pose, into meaningful
“regimes” by using the piece-wise nonlinear dy-
namics.

1. Introduction
Consider looking down on an airplane flying across country
or a car driving through a field. The vehicle’s motion is
composed of straight, linear dynamics and curving, non-
linear dynamics. An example is illustrated in fig. 1(a). In
this paper, we propose a new inference algorithm for fitting
switching nonlinear dynamical systems (SNLDS), which
can be used to segment time series of high-dimensional sig-
nals, such as videos, or lower dimensional signals, such as
(x,y) locations, into meaningful discrete temporal “modes”
or “regimes”. The transitions between these modes may cor-
respond to the changes in internal goals of the agent (e.g.,
a mouse switching from running to resting, as in Johnson
et al. (2016)) or may be caused by external factors (e.g.,
changes in the road curvature). Discovering such discrete
modes is useful for scientific applications (c.f., Wiltschko
et al. (2015); Linderman et al. (2019); Sharma et al. (2018))
as well as for planning in the context of hierarchical rein-
forcement learning (c.f., Kipf et al. (2019)).

Extensive previous work, some of which we review in Sec-
tion 2, explores modeling temporal data using various forms

1Google AI, Mountain View, California, USA 2VinAI Re-
search, Hanoi, Vietna. Correspondence to: Zhe Dong <zhe-
dong@google.com>.

Preliminary work. Under review.

(b) SNLDS (c) SLDS(a) Ground Truth

Figure 1. (a): Trajectory and ground truth segmentation of a par-
ticle. The direction of motion is indicated by the arrows. Blue is
moving straight, yellow is turning counter-clockwise, red is turning
clockwise. (c) Segmentation learned by our SNLDS model. (d)
Segmentation learned by a SLDS model. Note that to model the
nonlinear dynamics, the SLDS model needs to use more segments.

of state space models (SSM). We are interested in the class
of SSM which has both discrete and continuous latent vari-
ables, which we denote by st and zt, where t is the discrete
time index. The discrete state, st ∈ {1, 2, . . . ,K}, repre-
sents the mode of the system at time t, and the continuous
state, zi ∈ RH , represents other factors of variation, such
as location and velocity. The observed data is denoted by
xt ∈ RD, and can either be a low dimensional projection of
zt, such as the current location, or a high dimensional signal
that is informative about zt, such as an image. We may
optionally have observed input or control signals ut ∈ RU ,
which drive the system in addition to unobserved stochas-
tic noise. We are interested in learning a generative model
of the form pθ(s1:T , z1:T ,x1:T |u1:T ) from partial obser-
vations, namely (x1:T ,u1:T ). This requires inferring the
posterior over the latent states, pθ(s1:T , z1:T |v1:T ), where
vt = (xt,ut) contains all the visible variables at time t. For
training purposes, we usually assume that we have multi-
ple such trajectories, possibly of different lengths, but we
omit the sequence indices from our notations for simplic-
ity. This problem is very challenging, because the model
contains both discrete and continuous latent variables (a
so-called “hybrid system”) and has nonlinear transition and
observation models.

The main contribution of our paper is a new way to perform
efficient approximate inference in this class of SNLDS mod-
els. The key observation is that, conditioned on knowing
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Figure 2. Left: Illustration of the generative model. Dashed arrows
indicate optional connections. Right: Illustration of the inference
network. Solid black arrows share parameters θ with the generative
model, solid blue arrows have parameters φ that are unique to q.
The diamonds represent deterministic nodes computed with RNNs:
hx
t is a bidirectional RNN applied to x1:T , and hz

t is a unidrectional
RNN applied to hx

t−1 and zt−1.

z1:T as well as v1:T , we can marginalize out s1:T in linear
time using the forward-backward algorithm. In particular,
we can efficiently compute the gradient of the log marginal
likelihood, ∇

∑
s1:T

log p(s1:T |z̃1:T ,v1:T ), where z̃1:T is
a posterior sample that we need for model fitting. To effi-
ciently compute posterior samples z̃1:T , we learn an amor-
tized inference network qφ(z1:T |v1:T ) for the “collapsed”
NLDS model p(z1:T ,v1:T ). Collapsing removes the dis-
crete variables, and allows us to use reparameterization for
the continuous z. These tricks let us use stochastic gradient
descent (SGD) to learn p and q jointly, as explained in Sec-
tion 3. We can then use q as a proposal distribution inside a
Rao-Blackwellised particle filter (Doucet et al., 2000), al-
though in this paper, we just use a single posterior sample, as
is common with Variational AutoEncoders (VAEs, Kingma
& Welling (2014); Rezende et al. (2014)).

Although the above “trick” allows us efficiently perform
inference and learning, we find that in challenging problems
(e.g., when the dynamical model p(zt|zt−1,vt) is very flexi-
ble), the model uses only a single discrete latent variable and
does not perform mode switching. This is a form of “pos-
terior collapse”, similar to VAEs, where powerful decoders
can cause the latent variables to be ignored, as explained
in Alemi et al. (2018). Our second contribution is a new
form of posterior regularization, which prevents the afore-
mentioned problem and results in a significantly improved
segmentation.

We apply our method, as well as various existing methods,
to two previously proposed low-dimensional time series
segmentation problems, namely a 1d bouncing ball, and a

2d moving arm. In the 1d case, the dynamics are piecewise
linear, and all methods perform perfectly. In the 2d case,
the dynamics are piecewise nonlinear, and we show that our
method infers much better segmentation than previous ap-
proaches for comparable computational cost. We also apply
our method to a simple new video dataset (see fig. 1 for an
example) and sequences of human poses, and find that it
performs well, provided we use our proposed regularization
method.

In summary, our main contributions are

• Learning switching nonlinear dynamical systems pa-
rameterized with neural networks by marginalizing out
discrete variables.

• Using entropy regularization and annealing to encour-
age discrete state transitions.

• Demonstrating that the discrete states of nonlinear mod-
els are more interpretable.

2. Related Work
2.1. State space models

We consider the following state space model:

pθ(x, z, s) = p(x1|z1)p(z1|s1) (1)[
T∏
t=2

p(xt|zt)p(zt|zt−1, st)p(st|st−1,xt−1)

]
,

where st ∈ {1, . . . ,K} is the discrete hidden state, zt ∈ RL
is the continuous hidden state, and xt ∈ RD is the observed
output, as in fig. 2(a). For notational simplicity, we ignore
any observed inputs or control signals ut, but these can be
trivially added to our model.

Note that the discrete state influences the latent dynamics
zt, but we could trivially make it influence the observations
xt as well. More interesting are which edges we choose to
add as parents of the discrete state st. We consider the case
where st depends on the previous discrete state, st−1, as in
a hidden Markov model (HMM), but also depends on the
previous observation, xt−1. This means that state changes
do not have to happen “open loop”, but instead may be
triggered by signals from the environment. We can trivially
depend on multiple previous observations; we assume first-
order Markov for simplicity. We can also condition zt on
xt−1, and st on zt−1. It is straightforward to handle such
additional dependencies (shown by dashed lines in fig. 2(a))
in our inference method, which is not true for some of the
other methods we discuss below.

We still need to specify the functional forms of the condi-
tional probability distributions. In this paper, we make the
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following fairly weak assumptions:

p(xt|zt) = N (xt|fx(zt),R), (2)
p(zt|zt−1, st = k) = N (zt|fz(zt−1, k),Q), (3)

p(st|st−1 = j,xt−1) = Cat(st|S(fs(xt−1, j)), (4)

where fx,z,s are nonlinear functions (MLPs or RNNs),
N (·, ·) is a multivariate Gaussian distribution, Cat(·) is
a categorical distribution, and S(·) is a softmax function.
R ∈ RD×D and Q ∈ RH×H are learned covariance matri-
ces for the Gaussian emission and transition noise.

If fx and fz are both linear, and p(st|st−1) is first-order
Markov without dependence on zt−1, the model is called a
switching linear dynamical system (SLDS). If we allow st to
depend on zt−1, the model is called a recurrent SLDS (Lin-
derman et al., 2017; Linderman & Johnson, 2017). We will
compare to rSLDS in our experiments.

If fz is linear, but fx is nonlinear, the model is sometimes
called a “structured variational autoencoder” (SVAE) (John-
son et al., 2016), although that term is ambiguous, since
there are many forms of structure. We will compare to
SVAEs in our experiments.

If fz is a linear function, the model may need to use many
discrete states in order to approximate the nonlinear dynam-
ics, as illustrated in fig. 1(d). We therefore allow fz (and
fx) to be nonlinear. The resulting model is called a switch-
ing nonlinear dynamical system (SNLDS), or Nonlinear
Regime-Switching State-Space Model (RSSSM) (Chow &
Zhang, 2013). Prior work typically assumes fz is a simple
nonlinear model, such as polynomial regression. If we let
fz be a very flexible neural network, there is a risk that the
model will not need to use the discrete states at all. We
discuss a solution to this in Section 3.3.

The discrete dynamics can be modeled as a semi-
Markov process, where states have explicit durations (see
e.g., Duong et al. (2005); Chiappa (2014)). One recurrent,
variational version is the recurrent hidden semi-Markov
model (rHSMM, Dai et al. (2017)). Rather than having a
stochastic continuous variable at every timestep, rHSMM
instead stochastically switches between states with deter-
ministic dynamics. The semi-Markovian structures in this
work have an explicit maximum duration, which makes
them less flexible. A revised method, (Kipf et al., 2019),
is able to better handle unknown durations, but produces a
potentially infinite number of distinct states, each with de-
terministic dynamics. The deterministic dynamics of these
works may limit their ability to handle noise.

2.2. Variational inference and learning

A common approach to learning latent variable mod-
els is to maximize the evidence lower bound (ELBO)
on the log marginal likelihood (see e.g., Blei et al.

(2016)). This is given by log p(x) ≤ L(x;θ,φ) =
Eqφ(z,s|x) [log pθ(x, z, s)− log qφ(z, s|x)] , where
qφ(z, s|x) is an approximate posterior.1 Rather than
computing q using optimization for each x, we can train an
inference network, fφ(x), which emits the parameters of q.
This is known as ”amortized inference” (see e.g., Kingma
& Welling (2014)).

If the posterior distribution qφ(z, s|x) is reparameterizable,
then we can make the noise independent of φ, and hence
apply the standard SGD to optimize θ,φ. Unfortunately,
the discrete distribution p(s|x) is not reparameterizable. In
such cases, we can either resort to higher variance methods
for estimating the gradient, such as REINFORCE, or we can
use continuous relaxations of the discrete variables, such as
Gumbel Softmax (Jang et al., 2017), Concrete (Maddison
et al., 2017b), or combining both, such as REBAR (Tucker
et al., 2017). We will compare against a Gumbel-Softmax
version of SNLDS in our experiments. The continuous re-
laxation approach was applied to SLDS models in (Becker-
Ehmck et al., 2019) and HSMM models in (Liu et al., 2018a;
Kipf et al., 2019). However, the relaxation can lose many
of the benefits of having discrete variables (Le et al., 2019).
Relaxing the distribution to a soft mixture of dynamics re-
sults in the Kalman VAE (KVAE) model of Fraccaro et al.
(2017). We will compare to KVAE in our experiments. A
concern is that soft models may use a mixture of dynam-
ics for distinct ground truth states rather than assigning a
distinct mode of dynamics at each step as a discrete model
must do. In Section 3, we propose a new method to avoid
these issues, in which we collapse out s so that the entire
model is differentiable.

The SVAE model of Johnson et al. (2016) also uses the
forward-backward algorithm to compute q(s|v); however,
they assume the dynamics of z are linear Gaussian, so they
can apply the Kalman smoother to compute q(z|v). Assum-
ing linear dynamics can result in over-segmentation, as we
have discussed. A forward-backward algorithm is applied
once to the discrete states and once to the continuous states
to compute a structured mean field posterior q(z)q(s). In
contrast, we perform approximate inference for z using one
forward-backward pass of a non-linear network and then
exact inference for s using a second pass, as we explain
in Section 3.

2.3. Monte Carlo inference

There is a large literature on using sequential Monte Carlo
methods for inference in state space models as particle filters
(see e.g., Doucet & Johansen (2011)). When the model is
nonlinear (as in our case), we may need many particles to

1 In the case of sequential models, we can create tighter lower
bounds using methods such as FIVO (Maddison et al., 2017a),
although this is orthogonal to our work.
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get a good approximation, which can be expensive. We
can often get better (lower variance) approximations by
analytically marginalizing out some of the latent variables;
the resulting method is called a “Rao Blackwellised particle
filter” (RBPF).

Prior work (e.g., Doucet et al. (2001)) has applied RBPF
to SLDS models, leveraging the fact that it is possible to
marginalize out p(z|s,v) using the Kalman filter. It is also
possible to compute the optimal proposal distribution for
sampling from p(st|st−1,v) in this case. However, this re-
lies on the model being conditionally linear Gaussian. In
contrast, we marginalize out p(s|z,v), so we can handle
nonlinear models. In this case, it is hard to compute the op-
timal proposal distribution for sampling from p(zt|zt−1,v),
so instead we use variational inference to learn to approxi-
mate this.

3. Method
3.1. Inference

We use the following variational posterior: qφ,θ(z, s|x) =
qφ(z|x)pθ(s|z,x), where pθ(s|z,x) is the exact posterior
(under the generative model) computed using the forward-
backward algorithm, and qφ(z|x) is defined below. To com-
pute qφ(z|x), we first process x1:T through a bidirectional
RNN, whose state at time t is denoted by hxt . We then
use a forward (causal) RNN, whose state denoted by hzt ,
to compute the parameters of q(zt|z1:t−1,x1:T ), where the
hidden state is computed based on hzt−1 and hxt . This gives
the following approximate posterior: qφ(z1:T |x1:T ) =∏
t q(zt|z1:t−1,x1:T ) =

∏
t q(zt|hzt ). See fig. 2(b) for an

illustration.

We can draw a sample z1:T ∼ qφ(z|x) sequentially, and
then treat this as “soft evidence” for the HMM model. We
can use a forward-backward algorithm to integrate out the
discrete variables and compute gradients as Eqn. 8. This
approach offers a great amount of modeling flexibility. The
only constraints are that q(z|x) is differentiable and that the
discrete variables can be integrated out of p(x, z) to also
make it differentiable. The continuous transition dynam-
ics can be linear, a simple non-linear kernel function, or a
complicated function parameterized as an artificial neural
network or RNN. The discrete transitions can depend on
observed data, control signals, or the soft evidence samples,
z1:T . The flexibility of this formulation allows it to cover
the model families of multiple prior works (Johnson et al.,
2016; Linderman et al., 2017; Chow & Zhang, 2013; Doucet
et al., 2000) with a single core algorithm.

3.2. Learning

The evidence lower bound (ELBO) for a single sequence x
is given by

LELBO = Eqφ(z|x)pθ(s|x,z)[log pθ(x, z)pθ(s|x, z)
− log qφ(z|x)pθ(s|x, z)] (5)

= Eqφ(z|x) [log pθ(x, z)− log qφ(z|x)] (6)

Because qφ(z) is reparameterizable, we can approximate
the gradient as follows:

∇θ,φL(θ, φ) ≈ ∇θ,φ log pθ(x, z̃)−∇φ log qφ(z̃|x) (7)

where z̃ is a sample from the variational proposal z̃ ∼
qφ(z̃1|x1:T )

∏T
t=2 qφ(z̃t|z̃t−1,x1:T ). The second term can

be computed by applying backpropagation through time to
the inference RNN. In the appendix, we show that the first
term is given by

∇θ,φ log pθ(x, z̃)=
T∑
t=2

∑
j,k

γ2t (j, k)∇ [logBt(k)At(j, k)]

+
∑
k

γ11(k)∇ [logB1(k)π(k)] (8)

where

At(j, k) = p(st = j|st−1 = k,xt−1)

Bt(k) = p(xt|zt)p(zt|zt−1, st = k) (t > 1)

B1(k) = p(x1|z1)p(z1|s1 = k)

γ2t (j, k) = p(st = k, st−1 = j|x1:T , z1:T )

γ1t (k) = p(st = k|x1:T , z1:T )

3.3. Entropy regularization and temperature annealing

When using expressive nonlinear functions (e.g. an RNN
or MLP) to model p(zt|zt−1, st), we found that the model
only used a single discrete state, analogous to posterior
collpase in VAEs (see e.g., Alemi et al. (2018)). The
forward-backward algorithm causes this behavior because
low-probability states are never improved. Prior work, such
as (Linderman et al., 2017), solves this problem by multi-
step pretraining to ensure the model is well initialized. To
encourage the model to utilize multiple states, we add an
additional regularizing term to the ELBO that penalizes the
KL divergence between the state posterior at each time step
and a uniform prior pprior(st = k) = 1/K (Burke et al.,
2019). We call this a cross-entropy regularizer:

LCE =

T∑
t=1

KL(pprior(st)||p(st|z1:T ,x1:T )). (9)
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Our overall objective now becomes

L(θ,φ) = LELBO(θ,φ)− βLCE(θ,φ), (10)

where β > 0 is a scaling factor. To further smooth the
optimization problem, we apply temperature annealing to
the discrete state transitions, as follows: p(st = k|st−1 =

j,xt−1) = S(p(st=k|st−1=j,xt−1)
τ ), where τ is the tempera-

ture.

At the beginning stage of training, β, τ are set to large
values. Doing so ensures that all states are visited, and can
explain the data well. Over time, we reduce the regularizers
to 0 and temperature to 1, according to a fixed annealing
schedule. Initially, the regularization induces correlated
dynamics because each state needs to be used, but annealing
allows the dynamics to decorrelate (See Appendix A.6
and c.f., Rose (1998)). The result is similar to multi-step
pretraining but our approach works in a continuous end-to-
end fashion.

4. Experiments
In this section, we compare our method to various other
methods that have been recently proposed for time series
segmentation using latent variable models. Since it is hard to
evaluate segmentation without labels, we use three synthetic
datasets, where we know the ground truth, for quantitative
evaluation but we also qualitatively evaluate the segmenta-
tion on a real world dataset.

In each case, we fit the model to the data, and then esti-
mate the most likely hidden, discrete state at each time step,
ŝt = argmax q(st|x1:T ). Since the model is unidentifi-
able, the state labels have no meaning, so we post-process
them by selecting the permutation over labels that max-
imizes the F1 score across frames. The F1 score is the
harmonic mean of precision and recall, 2× precision×
recall/(precision+recall), where precision is the
percentage of the predictions that match the ground truth
states, and recall is the percentage of the ground truth
states that match the predictions. We also compute the
switching-point F1 by only considering the frames where
the ground truth state changes. This measure compliments
the frame-wise F1, because it measures temporal specificity.

4.1. 1d bouncing ball

In this section, we use a simple dataset from Johnson et al.
(2016). The data encodes the location of a ball bouncing
between two walls in a one dimensional space. The initial
position and velocity are random, but the wall locations are
constant.

We apply our SNLDS model to this data, where fx and fz
are both MLPs. We found that regularization was not neces-
sary in this experiment. We also consider the case where fx

0 2000 4000 6000 8000 100000

5

10

15

0.4

0.6

0.8

1.0

Training Steps

F1
 S

co
re

Lo
g 

R
el

at
iv

e 
N

LL

10K

2K

1K

100

Tr
ai

ni
ng

 S
te

p

Ground
Truth

Figure 3. SNLDS Segmentation on bouncing ball task with an
RNN continuous transition function. Top: illustration of input
sequence and reconstruction. Center (green): ground truth of the
latent discrete states that correspond to the two directions of motion.
Center (blue): the posterior marginals of p(st = k|x1:T , z1:T ) of
SNLDS at 100, 1000, 2000 and 10000 training steps, where lighter
colors represent higher likelihood. Bottom: Training progress of
the log relative negative log-likelihood (Orange) and frame-wise
F1 score (Blue) for SNLDS. Log relative negative log-likelihood
is calculated as ln(nll − min(nll) + 1.), where nll is negative
log-likelihood. The scale emphasizes that the loss still improves
even late during training.

and fz are linear (i.e. an SLDS model), the rSLDS model
of Linderman et al. (2017), the SVAE model of Johnson
et al. (2016), the Kalman VAE (KVAE) model of Fraccaro
et al. (2017) and a Gumbel-Softmax version of SNLDS as
described in Appendix A.2. We use the implementations of
rSLDS, SVAE, and KVAE provided by the authors.

All models we tested learn a perfect segmentation, as shown
in Figure 4(a) and Table 1. This serves as a “sanity check”
that we are able to use and implement the rSLDS, SVAE,
KVAE and Gumbel-Softmax SNLDS code correctly. (See
also Appendix A.3 for further analysis.)

Note that the “true” number of discrete states is just 2, en-
coding whether the ball is moving up or down. We find that
our method can learn to ignore irrelevant discrete states if
they are not needed. This is presumably because we are
maximizing the marginal likelihood since we sum over all
hidden states, and this is known to encourage model simplic-
ity due to the ”Bayesian Occam’s razor” effect (Murray &
Ghahramani, 2005). By contrast, we had to be more careful
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Table 1. Quantitative comparisons (in % ±σ) for segmentation on bouncing ball and reacher task. We report the F1 scores in percentage
with mean and standard deviation over 5 runs. (S.P. for switching point, F.W. for frame-wise, the best mean is in bold.) The F1 score for
CompILE is adapted from Kipf et al. (2019), where only switching point F1 score is provided. The F1 score for KVAE is computed based
on taking ‘argmax’ on the ‘dynamics parameter network’ as described in Fraccaro et al. (2017).

DATASET Bouncing Ball Reacher Task

METRIC F1 (S.P.) F1 (F.W.) F1 (S.P.) F1 (F.W.)

SLDS (Ours) 100. 100. 59.6 ± 3.2 81.0 ± 3.4
rSLDS 100. 100. 47.2± 3.2 69.8± 3.5
SVAE 100. 100. 35.3± 2.6 62.3± 4.9
KVAE 100. 100. 21.5± 8.0 33.7± 7.5

SNLDS (Ours) 100. 100. 78.1 ± 4.2 89.0 ± 2.0
Gumbel-Softmax SNLDS 97.6± 1.8 93.8± 4.0 5.0± 8.7 14.2± 9.3

CompILE - - 74.3± 3.3 -

in setting K when using the other methods.

An example of training a SNLDS model on the Bouncing
Ball task is provided as Figure 3. Early in training, the dis-
crete states do not align well to the ground truth transitions.
The three states transition rapidly near one of the walls and
the frame-wise F1 score is near chance values. However, by
ten thousand iterations, the model has learned to ignore one
state and switches between the two states corresponding to
the ball bouncing from the wall. Notably the negative log-
likelihood changes by over 10 orders of magnitude before
the model learns accurate segmentation of even this simple
problem. We hypothesize that the likelihood is dominated
by errors in continuous dynamics rather than in the discrete
segmentation until very late in training.

4.2. 2d reacher task

In this section, we consider a dataset proposed in the Com-
pILE paper (Kipf et al., 2019). The observations are se-
quences of 36 dimensional vectors, derived from the 2d
locations of various static objects, and the 2d joint locations
of a moving arm (see Appendix A.4 for details and a visual-
ization). The ground truth discrete state for this task is the
identity of the target that the arm is currently reaching for
(i.e., its ”goal”).

We fit the same 6 models as above to this dataset. It is a much
harder problem that requires more expressive dynamics, and
we found that we needed to add regularization to our model
to encourage it to switch states. Figure 4(b) visualizes the
resulting segmentation (after label permutation) for a single
example. We see that our SNLDS model matches the ground
truth more closely than our SLDS model, as well as the
rSLDS, SVAE, KVAE, and Gumbel-Softmax baselines.

To compare performance quantitatively, we evaluate the
models from 5 different training runs on the same held-out

dataset of size 32, and compute the F1 scores. We also
report the F1 number from CompILE. The CompILE paper
uses an iterative segmentation scheme that can detect state
changes, but it does infer what the current latent state is,
so we cannot include it in Figure 4(b). In Table 1, we find
that our SNLDS method is significantly better than the other
approaches.

4.3. Dubins path

In this section, we apply our method to a new dataset that
is created by rendering a point moving in the 2d plane.
The motion follows the Dubins model2, a simple model for
piece-wise nonlinear (but smooth) motion that is commonly
used in the fields of robotics and control theory because it
corresponds to the shortest path between two points that
can be traversed by wheeled robots, airplanes, etc. In the
Dubins model, the change in direction is determined by an
external control signal ut. We replace this with three latent
discrete control states: go straight, turn left, and turn right.
These correspond to fixed, but unobserved, input signals ut
(see Appendix A.5 for details). After generating the motion,
we create a series of images, where we render the location of
the moving object as a small circle on a white background.
Our goal in generating this dataset was to assess how well
we can recover latent dynamics from image data in a very
simple, yet somewhat realistic, setting.

The publicly released code for rSLDS and SVAE does not
support high dimensional inputs like images (even though
the SVAE has been applied to an image dataset in Johnson
et al. (2016)), and there is no public code for CompILE.
Therefore we could not compare to these methods for this
experiment. As we already showed in Section 4.2 that our
method is much better than these other approaches, as well

2 https://en.wikipedia.org/wiki/Dubins_
path

https://en.wikipedia.org/wiki/Dubins_path
https://en.wikipedia.org/wiki/Dubins_path
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Table 2. Quantitative comparisons (in %) for S(N)LDS on Dubins path. For SLDS, F1 scores with both greedy 1-to-1 matching (Greedy)
and optimal merging (Merging) are provided. The switching point F1 scores are estimated with both precise matching (Tol 0) or allowing
at most 5-step displacement (Tol 5).

METRIC SLDS (Greedy) SLDS (Merging) SNLDS

F1 (Switching point, Tol 0) 3.5± 1.0 4.4± 3.1 11.3 ± 5.7
F1 (Switching point, Tol 5) 33.7± 2.5 67.0± 3.4 82.5 ± 1.9

F1 (Frame-wise) 29.4± 3.6 61.5± 8.0 84.3 ± 7.2

Reacher

Bouncing Ball

Ground Truth

SNLDS (ours)

SLDS (ours)

rSLDS

SVAE

KVAE

Gumbel Softmax

Ground Truth

SNLDS (ours)

SLDS (ours)

rSLDS

SVAE

KVAE

Gumbel Softmax

Figure 4. Segmentation on bouncing ball (top) and reacher task
(bottom). From top to bottom: ground truth of latent discrete
states, then the posterior marginals, p(st = k|x1:T , z1:T ), of
the SNLDS, SLDS, rSLDS, SVAE, KVAE, and Gumbel-Softmax
SNLDS models respectively, where lighter color represents higher
probability. CompILE is not included because it represents a
different model family that directly predicts the segment boundary
without calculating posterior marginals at each time step.

as Kalman VAE and Gumbel-Softmax version of SNLDS,
on other tasks, we expect the same conclusion to hold on
the harder task of segmenting videos.

Instead we focus on comparing inferred SNLDS states with
SLDS states to determine the advantage of allowing each
regime to be represented by a nonlinear model. The results
of segmenting one sequence with these models using 5
states are shown in Figure 1. We see that the SLDS model

has to approximate the left and right turns with multiple
discrete states, whereas the non-linear model learns a more
interpretable representation.

We again compare the models in Table 2 using F1 scores.
Since matching the exact time of the switching point is very
hard in the unsupervised setting with noisy observations, we
also report an F1 computed with a tolerance of detecting
a change within 5 frames. Because the SLDS model used
too many states, we calculated two versions of the metrics.
The first was a greedy approach that optimally assigned
the best single state to match each ground truth state. The
second used an oracle to optimally merge states to match the
ground truth. The SNLDS model significantly outperforms
the SLDS in both scenarios.

4.4. Salsa Dancing from CMU MoCap

In this section, we demonstrate the capacity of SNLDS on
segmenting 3D human pose dynamics on CMU MoCap data
3. There are 30 trials of Salsa dancing sequences in the
dataset. We use 29 of them as the training data, and hold out
the other for evaluation. The training sequences are gener-
ated by down-sampling the original sequences using every 6
frames. The input to the model consists of 3D cordinates of
31 joints. Using MLP to describe the nonlinear transition of
continuous hidden states, SNLDS can segment sequences
into 3 modes of primitive motions, which could be inter-
preted as: turning clockwise, turning counter-clockwise, and
translational motion. Without ground truth segmentation,
we only evaluate the segmentation qualitatively, as shown
in the Figure 5.

4.5. Analysis of the annealing schedule

Many latent variable models are trained in multiple stages to
avoid getting stuck in bad local optima. For example, to fit
the rSLDS model, Linderman et al. (2017) first pretrain an
AR-HMM and SLDS model, and then merge them; similarly,
to fit the SVAE model, Johnson et al. (2016) first train with
a single latent state and then increase K.

We found a similar strategy was necessary for the Reacher,

3http://mocap.cs.cmu.edu/
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Figure 5. SNLDS segmentation result for Salsa dancing trial in CMU MoCap dataset. The model segment the motion into three different
dynamical modes: moving forward and backward (orange colored), clockwise turning (magenta) and counter-clockwise turning (green).
The center depicts the posterior marginal for each state and the boxes show samples of motion from each state.

Dubins, and Salsa tasks, but we do this in a smooth way
using annealed regularization. Early in training, we train
with large temperature τ and entropy coefficient β. This
encourages the model to use all states equally, so that the
dynamics, inference, and emission sub-networks stabilized
before beginning to learn specialized behavior. We then
anneal the entropy coefficient to 0, and the temperature to
1 over time. We found it best to first decay the entropy
coefficient β and then decay the temperature τ .

Figure 6 demonstrates the effect of 3 different annealing
schedules on the relative log likelihood (defined as Lt −
Lmin, where Lmin = mint Lt;1,2,3 across all three runs, and
Lt is the negative log-likelihood.), and the F1 score. We
find that the final negative log-likelihood and F1 scores
improve when we delay the annealing schedule to 50k steps
on the Dubins task. Surprisngly, the F1 score does not
improve significantly until an additional 50k steps after the
temperature begins annealing. On real problems, where we
have no ground truth, we cannot use the F1 score as a metric
to determine the best annealing schedule. However, it seems
that the schedules that improve F1 the most also improve
likelihood the most.

5. Conclusion
We have demonstrated that our proposed method can ef-
fectively learn to segment high dimensional sequences into
meaningful discrete regimes. Future work includes applying
this to harder image sequences and to hierarchical reinforce-
ment learning.
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Figure 6. Comparing the relative negative log-likelihood (top) and
the frame-wise F1 scores (bottom) on Dubins paths with 3 differ-
ent annealing schedules. In the first run (green), the regularization
coefficient and temperature start to decay at the very beginning of
training. In the second run (red), the cross entropy regularization
coefficient starts to decay at step 20, 000, while temperature an-
nealing starts at step 40, 000. In the third run (blue), the coefficient
decay starts at step 50, 000, while temperature annealing starts at
step 100, 000.
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A. Appendix
A.1. Derivation of the gradient of the ELBO

The evidence lower bound objective (ELBO) of the model
is defined as:

L = Eqθ,φ(z,s|x) [log pθ(x, z, s)− log qθ,φ(z, s|x)]
= Eqφ(z|x)pθ(s|x,z)[log pθ(x, z)pθ(s|x, z)

− log qφ(z|x)pθ(s|x, z)]
= Eqφ(z|x) [log pθ(x, z)] +H(qφ(z|x)) (11)

where the first term is the model likelihood, and the second
is the conditional entropy for variational posterior of con-
tinuous hidden states. We can approximate the entropy of
qφ(z|x) as:

H(qφ(z|x)) = H(qφ(z1)) +

T∑
t=2

H(qφ(zt|z̃1:t−1))

where z̃t ∼ q(zt) is a sample from the variational posterior.
In other words, we compute the marginal entropy for the
output of the RNN inference network at each time step, and
then sample a single latent vector to update the RNN state
for the next step.

In order to apply stochastic gradient descent for end-to-end
training, the minibatch gradient for the first term in the
ELBO (Eq. 11) with respect to θ is estimated as

∇θEqφ(z|x) [log pθ(x, z)] = Eqφ(z|x) [∇θ log pθ(x, z)]

For the gradient with respect to φ, we can use the reparame-
terization trick to write

∇φEqφ(z|x) [log pθ(x, z)]
= Eε∼N [∇φ log pθ(x, zφ(ε,x))]

Therefore, the gradient is expressed as:

∇θL = Eqφ(z|x) [∇θ log pθ(x, z)] ,
∇φL = Eε∼N [∇φ log pθ(x, zφ(ε,x))] +∇φH(qφ(z|x)).

To compute the derivative of the log-joint likelihood
∇θ,φ log pθ(v), where we define v = (x1:T , z1:T ) as the
visible variables for brevity. Therefore

∇ log p(v) =Ep(s|v) [∇ log p(v)]

=Ep(s|v) [∇ log p(v, s)]

− Ep(s|v) [∇ log p(s|v)]
=Ep(s|v) [∇ log p(v, s)]− 0

where we used the fact that log p(v) = log p(v, s) −
log p(s|v) and

Ep(s|v) [∇ log p(s|v)] =
∫
p(s|v)∇p(s|v)

p(s|v)

= ∇
∫
p(s|v) = ∇1 = 0.

For∇ log p(v, s), we use the Markov property to rewrite it
as:

∇ log p(v, s) =

T∑
t=2

∇ log p(xt|zt)p(zt|zt−1, st)p(st|st−1,xt−1)

+∇ log p(x1|z1)p(z1|s1)p(s1),

with the expectation being:

∇ log p(v) = Ep(s|v) [∇ log p(v, s)]

=
∑
k

p(s1 = k|v)∇ log p(x1|z1)p(z1|s1 = k)p(s1 = k)

+

T∑
t=2

∑
j,k

p(st−1 = j, st = k|v)∇ [log p(xt|zt)·

p(zt|zt−1, st = k)p(st = k|st−1 = j,xt−1)]

=

T∑
t=2

∑
j,k

γ2t (j, k)∇ logBt(k)At(j, k)

+
∑
k

γ11(k)∇ logB1(k)π(k).

Therefore we reach the Eq. 8.

In summary, one step of stochastic gradient ascent for the
ELBO can be implemented as Algorithm 1.

Algorithm 1 SVI for Training SNLDS

1: Compute hxt from x1:T using a Bi-RNN;
2: Recursively sample zt ∼ q(zt|zt−1,x1:T ) using RNN

over zt−1 and hxt ;
3: Run forward-backward messages to compute A, B, π,

γ1
1:T , γ2

1:T−1 from (x, z);
4: Compute∇θ,φ log p(x, z) from Eqn. 8;
5: Take gradient step.

A.2. Gumbel-Softmax SNLDS

Instead of marginalizing out the discrete states with the
forward-backward algorithm, one could use a continuous
relaxation via reparameterization, e.g. the Gumbel-Softmax
trick (Jang et al., 2017), to infer the most likely discrete
states. We call this Gumbel-Softmax SNLDS.

We consider the same state space model as SNLDS:

pθ(x, z, s) = p(x1|z1)p(z1|s1)[
T∏
t=2

p(xt|zt)p(zt|zt−1, st)p(st|st−1,xt−1)

]
,

where st ∈ {1, . . . ,K} is the discrete hidden state, zt ∈ RL
is the continuous hidden state, and xt ∈ RD is the observed
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output, as in Figure 2(a). The inference network for the
variational posterior now predicts both s and z and is defined
as

qφz,φs
(z, s|x) = qφz

(z|x)qφs
(s|x) (12)

where

qφz
(z1:T |x1:T ) =

∏
t

q(zt|z1:t−1,x1:T )

=
∏
t

q(zt|ht)δ(ht|fRNN (ht−1, zt−1,h
b
t))

qφs
(s1:T |x1:T ) =

∏
t

q(st|st−1,x1:T )

=
∏
t

qGumbel−Softmax(st|g(hbt , st−1), τ)

where ht is the hidden state of a deterministic recurrent
neural network, fRNN (·), which works from left (t = 0) to
right (t = T ), summarizing past stochastic z1:t−1. We also
feed in hbt , which is a bidirectional RNN, which summarizes
x1:T . The Gumbel-Softmax distribution qGumbel−Softmax

takes the output of a feed-forward network g(·) and a soft-
max temperature τ , which is annealed according to a fixed
schedule.

The evidence lower bound (ELBO) could be written as

LELBO(θ,φ) = Eqφz
(z|x)qφs

(s|x) [log pθ(x, z, s)

− log qφz
(z|x)qφs

(s|x)
]

(13)

One step of stochastic gradient ascent for the ELBO can be
implemented as Algorithm 2.

Algorithm 2 SVI for Training Gumbel-Softmax SNLDS

1: Use Bi-RNN to compute hxt from x1:T ;
2: Recursively sample zt ∼ q(zt|zt−1,x1:T ) using RNN

over zt−1 and hxt ;
3: Recursively sample st with distribution
qGumbel−Softmax(st|g(hbt , st−1), τ), where g is a
feedforward network;

4: Compute the likelihood for eq. (13);
5: Take gradient step.

A.3. Details on the bouncing ball experiment

The input data for bouncing ball experiment is a set
of 100000 sample trajectories, each of which is of 100
timesteps with its initial position randomly placed between
two walls separated by a distance of 10.. The velocity
of the ball for each sample trajectory is sampled from
U([−0.5, 0.5]). The exact position of ball is obscured with
Gaussian noise N (0, 0.1). The training is performed with
batch size 32. The evaluation is carried on a fixed, held-
out subset of the data with 200 samples. For the inference

network, the bi-directional and forward RNNs are both 16 di-
mensional GRU. The dimensions of discrete and continuous
hidden state are set to be 3 and 4. For SLDS, we use linear
transition for continuous states. For SNLDS, we use GRU
with 4 hidden units followed by linear transformation for
continuous state transition. The model is trained with fixed
learning rate of 10−3, with the Adam optimizer (Kingma &
Ba, 2015), and gradient clipping by norm of 5. for 10000
steps.

A.4. Details on the reacher experiment

Figure 7. Illustration of the observations in reacher experiment.
This is 2-D rendering of the observational vector, but the inputs to
the model are sequences of vectors, as in Kipf et al. (2019), not
images.

The observations in the reacher experiment are sequences
of 36 dimensional vectors, as described in Kipf et al. (2019).
First 30 elements are the target indicator, α, and location,
x, y, for 10 randomly generated objects. 3 out of 10 objects
start as targets, α = 1. The (x, y) location for 5 of the non-
target objects are set to (0, 0). A deterministic controller
moves the arm to the indicated target objects. Once a tar-
get is reached, the indicator is set to α = 0. (Depicted as
the yellow dot disappearing in Figure 7.) The remaining 6
elements of the observations are the two angles of reacher
arm and the positions of two arm segment tips. The train-
ing dataset consists of 10000 observation samples, each 50
timesteps in length.

This more complex task requires more careful training. The
learning rate schedule is a linear warm-up, 10−5 to 10−3

over 5000 steps, from followed by a cosine decay, with
decay rate of 2000 and minimum of 10−5. Both entropy
regularization coefficient starts to exponentially decay after
50000 steps, from initial value 1000 with a decay rate 0.975
and decay steps 500. The temperature annealing follows
the same exponential but only starts to decay after 100000
steps. The training is performed in minibatches of size 32
for 300000 iterations using the Adam optimizer (Kingma &
Ba, 2015).

The model architecture is relatively generic. The contin-
uous hidden state z is 8 dimensional. The number of dis-
crete hidden states is set to 5 for training, which is larger
than the ground truth 4 (including states targeting 3 ob-
jects and a finished state). The observations pass through
an encoding network with two 256-unit ReLU activated
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fully-connected nets, before feeding into RNN inference
networks to estimate the posterior distributions q(zt|x1:T ).
The RNN inference networks consist of a 32-unit bidirec-
tion LSTM and a 64-unit forward LSTM. The emission
network is a three-layer MLP with [256, 256, 36] hidden
units and ReLU activation for first two layers and a linear
output layer. Discrete hidden state transition network takes
two inputs: the previous discrete state and the processed
observations. The observations are processed by the encod-
ing network and a 1-D convolution with 2 kernels of size
3. The transition network outputs a 5× 5 matrix for transi-
tion probability p(st|st−1) at each timestep. For SNLDS,
we use a single-layer MLP as the continuous hidden state
transition functions p(zt|zt−1, st), with 64 hidden units and
ReLU activation. For SLDS, we use linear transitions for
the continuous state.

A.5. Details on the Dubins path experiment

The Dubins path model4 is a simplified flight, or vehicle,
trajectory that is the shortest path to reach a target position,
given the initial position (x0, y0), the direction of motion θ0,
the speed constant V , and the maximum curvature constraint
θ̇ ≤ u. The possible motion along the path is defined by

ẋt = V cos(θt), ẏt = V sin(θt), θ̇t = u.

The path type can be described by three different
modes/regimes: ‘right turn (R)’ , ‘left turn (L)’ or ‘straight
(S).’

To generate a sample trajectory used in training or testing,
we randomly sample the velocity from a uniform distribu-
tion V ∼ U([0.1, 0.5]) (pixel/step), angular frequency from
a uniform distribution u/2π ∼ U([0.1, 0.15]) (/step), and
initial direction θ0 ∼ U([0, 2π)). The generated trajectories
always start from the center of image (0, 0). The dura-
tion of each regime is sampled from a Poisson distribution
with mean 25 steps, with full sequence length 100 steps.
The floating-point positional information is rendered onto
a 28× 28 image with Gaussian blurring with 0.3 standard
deviation to minimize aliasing.

The same schedules as in the reacher experiment are used for
the learning rate, temperature annealing and regularization
coefficient decay.

The network architecture is similar to the reacher task except
for the encoder and decoder networks. Each observation
is encoded with a CoordConv (Liu et al., 2018b) network
before passing into RNN inference networks, the archicture
is defined in Table 3. The emission network p(xt|zt) also
uses a CoordConv network as described in Table 4. The con-
tinuous hidden state z in this experiment is 4 dimensional.

4 https://en.wikipedia.org/wiki/Dubins_
path

The number of discrete hidden states s is set to be 5, which
is larger than ground truth 3. The inference networks are
a 32-unit bidirection LSTM and a 64-unit forward LSTM.
The discrete hidden state transition network takes the output
of observation encoding network in the same manner as
the reacher task. For SNLDS, we use a two-layer MLP as
continuous hidden state transition function p(zt|zt−1, st),
with [32, 32] hidden units and ReLU activation. For SLDS,
we use linear transition for continuous states.

See Figure 8 for an illustration of the reconstruction abilities
(of the observed images) for the SLDS and SNLDS models.
They are visually very similar; however, the SNLDS has a
more interpretable latent state as described in Section 4.3.

Input SNLDS SLDS

Figure 8. Image sequence reconstruction for Dubins path. The
sequence is averaged with early timepoints scaled to low intensity,
late timepoints unchanged to indicate direction.

A.6. Regularization and Multi-steps Training

Figure 9. Comparing the average Pearson correlations among
the weights from individual dynamical transition modes,
p(zt|zt−1, st = k), trained on Dubins Paths. Run 0 (green) is
trained without regularization. Run 1 (blue) has its entropy co-
efficient starting to exponentially decay at step 50, 000, and the
temperature starting to anneal at step 100, 000.

Training our SNLDS model with a powerful transition
network but without regularization will fit the dynamics
p(zt|zt−1, st) with a single state. With randomly initialized
networks, one state fits the dynamics better at the beginning
and the forward-backward algorithm will cause more gradi-
ents to flow through that state than others. The best state is
the only one that gets better.

To prevent this, we use regularization to cause the model to

https://en.wikipedia.org/wiki/Dubins_path
https://en.wikipedia.org/wiki/Dubins_path
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Table 3. CoordConv encoder Architecture. Before passing into the following network, the image is padded from [28, 28, 1] to [28, 28, 3]
with the pixel coordinates.

Layer Filters Shape Activation Stride Padding
1 2 [5, 5] relu 1 same
2 4 [5, 5] relu 2 same
3 4 [5, 5] relu 1 same
4 8 [5, 5] relu 2 same
5 8 [7, 7] relu 1 valid
6 8 2 (Kernel Size) None 1 causal

Table 4. CoordConv decoder Architecture. Before passing into the following network, the input zt is tiled from [8] to [28, 28, 8], where 8
is the hidden dimension, and is then padded to [28, 28, 10] with the pixel coordinates.

Layer Filters Shape Activation Stride Padding
1 14 [1, 1] relu 1 valid
2 14 [1, 1] relu 1 valid
3 28 [1, 1] relu 1 valid
4 28 [1, 1] relu 1 valid
5 1 [1, 1] relu 1 same

select each mode with uniform likelihood until the inference
and emission network are well trained. Thus all discrete
modes are able to learn the dynamics well initially. When
the regularization decays, the transition dynamics of each
mode can then specialize. One effect of this regularization
strategy is that the weights for each dynamics module are
correlated early during training and decorrelate when the
regularization decays. The regularization helps the model to
better utilize its capacity, and the model can achieve better
likelihood, as demonstrated in Section 4.5 and Figure 6.

Multi-steps training has been used by previous models, and
it serves the same purpose as our regularization. SVAE
first trains a single transition model, then uses that one set
of parameters to initialize all the transition dynamics for
multiple states in next stage of training. rSLDS training
begins by fitting a single AR-HMM for initialization, then
fits a standard SLDS, before finally fitting the rSLDS model.
We follow these implementations of both SVAE and rSLDS
in our paper. Both multi-step training and our regularization
ensure the hidden dynamics are well learned before learning
the segmentation. What makes our regularization approach
interesting is that it allows the model to be trained with a
smooth transition between early and late training.


