February 8, 2023 Machine Learning
An Additive Instance-Wise Approach to Multi-class Model Interpretation
31 minutes
Vy Vo, Van Nguyen, Trung Le, Quan Hung Tran, Gholamreza Haffari, Seyit Camtepe, Dinh Phung
ICLR 2023
Abstract
Interpretable machine learning offers insights into what factors drive a certain prediction of a black-box system. A large number of interpreting methods focus on identifying explanatory input features, which generally fall into two main categories: attribution and selection. A popular attribution-based approach is to exploit local neighborhoods for learning instance-specific explainers in an additive manner. The process is thus inefficient and susceptible to poorly-conditioned samples. Meanwhile, many selection-based methods directly optimize local feature distributions in an instance-wise training framework, thereby being capable of leveraging global information from other inputs. However, they can only interpret single-class predictions and many suffer from inconsistency across different settings, due to a strict reliance on a pre-defined number of features selected. This work exploits the strengths of both methods and proposes a framework for learning local explanations simultaneously for multiple target classes. Our model explainer significantly outperforms additive and instance-wise counterparts on faithfulness with more compact and comprehensible explanations. We also demonstrate the capacity to select stable and important features through extensive experiments on various data sets and black-box model architectures.
31 minutes
Vy Vo, Van Nguyen, Trung Le, Quan Hung Tran, Gholamreza Haffari, Seyit Camtepe, Dinh Phung
ICLR 2023